Energy harvesting is a promise to harvest unwanted vibrations from a host structure. Similarly, a dynamic vibration absorber is proved to be a very simple and effective vibration suppression device, with many practical implementations in civil and mechanical engineering. This paper analyzes the prospect of using a vibration absorber for possible energy harvesting. To achieve this goal, a vibration absorber is supplemented with a piezoelectric stack for both vibration confinement and energy harvesting. It is assumed that the original structure is sensitive to vibrations and that the absorber is the element where the vibration energy is confined, which in turn is harvested by means of a piezoelectric stack. The primary goal is to control the vibration of the host structure and the secondary goal is to harvest energy out of the dynamic vibration absorber at the same time. Approximate fixed-point theory is used to find a closed form expression for optimal frequency ratio of the vibration absorber. The changes in the optimal parameters of the vibration absorber due to the addition of the energy harvesting electrical circuit are derived. It is shown that with a proper choice of harvester parameters a broadband energy harvesting can be obtained combined with vibration reduction in the primary structure.

References

1.
Ali
,
S. F.
, and
Ramaswamy
,
A.
,
2009
, “
Testing and Modeling of MR Damper and its Application to MDOF Systems Using Integral Backstepping Technique
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
2
), p.
021009
.10.1115/1.3072154
2.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
205
.10.1177/0583102404043275
3.
Priya
,
S.
,
2007
, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
,
19
(
1
), pp.
167
184
.10.1007/s10832-007-9043-4
4.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
175
195
.10.1088/0957-0233/17/12/R01
5.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.10.1088/0964-1726/16/3/R01
6.
Ali
,
S. F.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitations
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.10.1063/1.3560523
7.
Lefeuvre
,
E.
,
Badel
,
A.
,
Benayad
,
A.
,
Lebrun
,
L.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2005
, “
A Comparison Between Several Approaches of Piezoelectric Energy Harvesting
,”
J. Phys. IV
,
128
, pp.
177
186
.10.1051/jp4:2005128027
8.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
,
Petit
,
L.
, and
Guyomar
,
D.
,
2006
, “
A Comparison Between Several Vibration-Powered Piezoelectric Generators for Standalone Systems
,”
Sensors Actuators A Phys.
,
126
(
2
), pp.
405
416
.10.1016/j.sna.2005.10.043
9.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
10.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.10.1063/1.3436553
11.
Williams
,
C.
, and
Yates
,
R.
,
1996
, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sensors Actuators A Phys.
,
52
, pp.
8
11
.10.1016/0924-4247(96)80118-X
12.
Amirtharajah
,
R.
, and
Chandrakasan
,
A.
,
1998
, “
Self-Powered Signal Processing Using Vibration-Based Power Generation
,”
IEEE J. Solids State Circuits
,
33
(
5
), pp.
687
695
.10.1109/4.668982
13.
Kulkarni
,
S.
,
Koukharenko
,
E.
,
Torah
,
R.
,
Tudor
,
J.
,
Beeby
,
S.
,
O'Donnell
,
T.
, and
Roy
,
S.
,
2008
, “
Design, Fabrication and Test of Integrated Micro-Scale Vibration-Based Electromagnetic Generator
,”
Sensors Actuators A Phys.
,
145
, pp.
336
342
.10.1016/j.sna.2007.09.014
14.
Sodano
,
H.
,
Inman
,
D.
, and
Park
,
G.
,
2005
, “
Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries
,”
J. Intel. Mater. Syst. Struct.
,
16
(
10
), pp.
799
807
.10.1177/1045389X05056681
15.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
16.
Ali
,
S.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2010
, “
Piezoelectric Energy Harvesting With Parametric Uncertainty
,”
Smart Mater. Struct.
,
19
(
10
), p.
105010
.10.1088/0964-1726/19/10/105010
17.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
,
2004
, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
(
2
), pp.
49
58
.10.1111/j.1475-1305.2004.00120.x
18.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
, pp.
409
425
.10.1016/j.jsv.2005.10.003
19.
Ng
,
T.
, and
Liao
,
W.
,
2005
, “
Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor
,”
J. Intel. Mater. Syst. Struct.
,
16
(
10
), pp.
785
797
.10.1177/1045389X05053151
20.
Cornwell
,
P.
,
Goethals
,
J.
,
Kowtko
,
J.
, and
Damianakis
,
M.
,
2005
, “
Enhancing Power Harvesting Using a Tuned Auxiliary Structure
,”
J. Intel. Mater. Syst. Struct.
,
16
, pp.
825
834
.10.1177/1045389X05055279
21.
Beeby
,
S. P.
,
Torah
,
R. N.
,
Tudor
,
M. J.
,
Glynne-Jones
,
P.
,
O'Donnell
,
T.
,
Saha
,
C. R.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), pp.
1257
1265
.10.1088/0960-1317/17/7/007
22.
Nakano
,
K.
,
Suda
,
Y.
, and
Nakadai
,
S.
,
2003
, “
Self Powered Active Vibration Control Using a Single Electric Actuator
,”
J. Sound Vib.
,
260
, pp.
213
235
.10.1016/S0022-460X(02)00980-X
23.
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2009
, “
Self Powered Magnetorheological Dampers
,”
ASME J. Vib. Acoust.
,
131
, p.
044501
.10.1115/1.3142882
24.
Chtiba
,
M. O.
,
Choura
,
S.
,
Nayfeh
,
A. H.
, and
El-Borgi
,
S.
,
2010
, “
Vibration Confinement and Energy Harvesting in Flexible Structures Using Collocated Absorbers and Piezoelectric Devices
,”
J. Sound Vib.
,
329
, pp.
261
276
.10.1016/j.jsv.2009.09.028
25.
Tang
,
X.
, and
Zuo
,
L.
,
2010
, “
Regenerative Semi Active Control of Tall Building Vibration With Series TMDs
,”
American Control Conference
,
Baltimore, MD
, June 30–July 2, Vol. FrA12.1, pp.
5094
5099
.
26.
Hartog
,
J. P. D.
,
1985
,
Mechanical Vibrations
,
Dover
,
New York
.
27.
Caughey
,
T. K.
, and
O'Kelly
,
M. E. J.
,
1965
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
32
, pp.
583
588
.10.1115/1.3627262
28.
Adhikari
,
S.
,
2006
, “
Damping Modelling Using Generalized Proportional Damping
,”
J. Sound Vib.
,
293
(
1–2
), pp.
156
170
.10.1016/j.jsv.2005.09.034
29.
Ormondroyd
,
J.
, and
Hartog
,
J. P. D.
,
1928
, “
Theory of the Dynamic Vibration Absorber
,”
Trans. Am. Soc. Mech. Eng.
,
50
, pp.
9
22
.
30.
Randall
,
S. E.
,
Halsted
,
D. M.
, and
L.
Taylor
,
D.
,
1981
, “
Optimum Vibration Absorber for Linear Damped System
,”
ASME J. Mech. Design
,
103
, pp.
908
913
.10.1115/1.3255005
31.
Zhu
,
S. J.
,
Zheng
,
Y. F.
, and
Fu
,
Y. M.
,
2004
, “
Analysis of Non-Linear Dynamics of a Two-Degree-of-Freedom Vibration System With Non-Linear Damping and Non-Linear Spring
,”
J. Sound Vib.
,
271
(
1–2
), pp.
15
24
.10.1016/S0022-460X(03)00249-9
32.
Liu
,
K.
, and
Coppola
,
G.
,
2010
, “
Optimal Design of Damper Dynamic Vibration Absorber for Damped Primary Systems
,”
Trans. Can. Soc. Mech. Eng.
,
34
(
1
), pp.
119
135
.
33.
Thompson
,
A. G.
,
1980
, “
Optimizing the Untuned Viscous Dynamic Vibration Absorber With Primary System Damping: A Frequency Locus Method
,”
J. Sound Vib.
,
77
, pp.
469
472
.10.1016/0022-460X(80)90528-3
34.
Pennestri
,
E.
,
1998
, “
An Application of Chebyshev's Min-Max Criterion to the Optimum Design of a Damped Dynamic Vibration Absorber
,”
J. Sound Vib.
,
217
, pp.
757
765
.10.1006/jsvi.1998.1805
35.
Brown
,
B.
, and
Singh
,
T.
,
2011
, “
Minimax Design of Vibration Absorbers for Linear Damper Systems
,”
J. Sound Vib.
,
330
, pp.
2437
2448
.10.1016/j.jsv.2010.12.002
36.
Ghosh
,
A.
, and
Basu
,
B.
,
2007
, “
A Closed-Form Optimal Tuning Criterion for TMD in Damped Structures
,”
Struct. Control Health Monitor.
,
14
, pp.
681
692
.10.1002/stc.176
37.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.-G.
,
2005
, “
Design Consideration For MEMS Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integrated Ferroelectrics Int. J.
,
71
(
1
), pp.
121
160
.10.1080/10584580590964574
You do not currently have access to this content.