Woven structures are steadily emerging as excellent reinforcing components in composite materials. Metallic woven meshes, unlike most woven fabrics, show high potential for strengthening via classical methods such as heat treatment. Development of strengthening processes for metallic woven materials, however, must account not only for behavior of the constituent wires, but also for the interactions between contacting wires. Yield behavior of a 325 × 2300 stainless steel 316L (SS316L) twill dutch woven wire mesh is analyzed via experimental data and 3D numerical modeling. The effects of short dwell-time heat treatment on the mechanical properties of this class of materials is investigated via uniaxial tensile tests in the main weave orientations. Scanning electron microscopy (SEM) is employed to investigate the effects of heat treatment on contacting wire interaction, prompted by observations of reduced ductility in the macrostructure of the mesh. Finally, the finite element method (FEM) is used to simulate the accumulation of plastic deformation in the mesostructure of the mesh, investigating how this wire level plasticity ultimately affects global material yielding.

References

References
1.
Kawabata
,
S.
,
Niwa
,
M.
, and
Kawai
,
H.
,
1964
, “
The Finite Deformation Theories of Plain Weave Fabric, Part 1—The Biaxial-Deformation Theory
,”
J. Text. Inst.
,
64
, pp.
21
46
.10.1080/00405007308630416
2.
Kumazawa
,
H.
,
Susuki
,
I.
,
Morita
,
T.
, and
Kuwabara
,
T.
,
2005
, “
Mechanical Properties of Coated Plain Weave Fabrics Under Biaxial Loads
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
48
(
160
), pp.
117
123
.10.2322/tjsass.48.117
3.
Zheng
,
J.
,
Takatera
,
M.
,
Inui
,
S.
, and
Shimizu
,
Y.
,
2008
, “
Measuring Technology of the Anisotropic Tensile Properties of Woven Fabrics
,”
Text. Res. J.
,
78
(
12
), pp.
1116
1123
.10.1177/0040517507083437
4.
Chen
,
S.
,
Ding
,
X.
, and
Yi
,
H.
,
2007
, “
On the Anisotropic Tensile Behaviors of Flexible Polyvinyl Chloride-Coated Fabrics
,”
Text. Res. J.
,
77
(
6
), pp.
369
374
.10.1177/0040517507078791
5.
Cavallaro
,
P.
,
Sadegh
,
A.
, and
Quigley
,
C.
,
2007
, “
Decrimping Behavior of Uncoated Plain-Woven Fabrics Subjected to Combined Biaxial Tension and Shear Stresses
,”
Text. Res. J.
,
77
(
6
), pp.
404
416
.10.1177/0040517507080258
6.
Tarfaoui
,
M.
, and
Drean
,
J. Y.
,
2001
, “
Predicting the Stress-Strain Behavior of Woven Fabrics Using the Finite Element Method
,”
Text. Res. J.
,
71
(
9
), pp.
790
795
.10.1177/004051750107100908
7.
Nicolleto
,
G.
, and
Riva
,
E.
,
2004
, “
Failure Mechanisms in Twill-Weave Laminates: FEM Predictions vs. Experiments
,”
Composites, Part A
,
35
, pp.
787
795
.10.1016/j.compositesa.2004.01.007
8.
Barbero
,
E. J.
,
Trovillion
,
J.
,
Mayugo
,
J. A.
, and
Sikkil
,
K. K.
,
2006
, “
Finite Element Modeling of Plain Weave Fabrics From Photomicrograph Measurements
,”
Compos. Sturct.
,
73
, pp.
41
52
.10.1016/j.compstruct.2005.01.030
9.
Kraft
,
S.
, and
Gordon
,
A. P.
,
2011
, “
Characterization of the Mechanical Behavior of a Metallic Fiber Woven Structure
,”
Text. Res. J.
,
81
(
12
), pp.
1249
1272
.10.1177/0040517511398944
10.
Gibson
,
R. F.
,
2007
,
Principles of Composite Material Mechanics
,
CRC Press
,
Boca Raton, FL
.
11.
Smits
,
A.
,
Van Hemelrijck
,
D. V.
,
Philippidis
,
T. P.
, and
Cardon
,
A.
,
2006
, “
Design of a Cruciform Specimen for Biaxial Testing of Fiber Reinforced Composite Structures
,”
Compos. Sci. Technol.
,
66
, pp.
964
975
.10.1016/j.compscitech.2005.08.011
12.
Makinde
,
A.
,
Thibodeau
,
L.
, and
Neale
,
K. W.
,
1992
, “
Development of an Apparatus for Biaxial Testing Using Cruciform Specimens
,”
Exp. Mech.
,
32
(
2
), pp.
138
144
.10.1007/BF02324725
13.
Antoun
,
B. R.
, and
Song
,
B.
,
2009
, “
Interaction of Hydrogen and Deformation in 316L Stainless Steel
,”
Proceedings of the SEM Annual Conference
,
Albuquerque, NM
, June 1–4.
14.
ASM International
,
1998
,
ASM Metals Handbook, 2nd Desk Edition
,
ASM International
,
Materials Park, OH
.
You do not currently have access to this content.