Motivated by a model that qualitatively captured the response of vertically aligned carbon nanotube (VACNT) pillars in uniaxial compression, we consider the uniaxial tensile response of a class of compressible elastic-viscoplastic solids. In Hutchens et al. [“Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes,” J. Mech. Phys. Solids, 59, pp. 2227–2237 (2011), Erratum 60, 1753–1756 (2012)] an elastic viscoplastic constitutive relation with plastic compressibility, plastic non-normality, and a hardening-softening-hardening hardness function was used to model experimentally obtained uniaxial compression data of cylindrical VACNT micropillars. Complex deformation modes were found in uniaxial compression, which include a sequential buckling-like collapse of the type seen in experiments. These complex deformation modes led to the overall stress-strain signature of the pillar not being of the same form as the input material hardness function. A fundamental question that motivates exploring the deformation of this class of materials—both experimentally and theoretically—is how to extract the intrinsic material response from simple tests. In this study we explore the relation between the input material response and the overall stress strain behavior in uniaxial tension using the constitutive framework of Hutchens et al. A simple one-dimensional analysis reveals the types of instability modes to be expected. Dynamic, finite deformation finite element calculations are carried out to explore the dependence of diffuse necking, localized necking, and propagating band deformation modes on characteristics of the hardness function. Attention is devoted to uncovering implications for obtaining intrinsic material properties of complex hierarchical structures; for example, vertically aligned carbon nanotubes (VACNTs), from uniaxial tension experiments.

References

References
1.
Cao
,
A. Y.
,
Dickrell
,
P. L.
,
Sawyer
,
W. G.
,
Ghasemi-Nejhad
,
M. N.
, and
Ajayan
,
P. M.
,
2005
, “
Supercompressible Foamlike Carbon Nanotube Films
,”
Science
,
310
, pp.
1307
1310
.10.1126/science.1118957
2.
Pathak
,
S.
,
Cambaz
,
Z. G.
,
Kalidindi
,
S. R.
,
Swadener
,
J. G.
, and
Gogotsi
,
Y.
,
2009
, “
Viscoelasticity and High Buckling Stress of Dense Carbon Nanotube Brushes
,”
Carbon
,
47
, pp.
1969
1976
.10.1016/j.carbon.2009.03.042
3.
Gogotsi
,
Y.
,
2010
, “
High-Temperature Rubber Made From Carbon Nanotubes
,”
Science
,
330
, pp.
1332
1333
.10.1126/science.1198982
4.
Xu
,
M.
,
Futaba
,
D. N.
,
Yamada
,
T.
,
Yumura
,
M.
, and
Hata
,
K.
,
2010
, “
Carbon Nanotubes With Temperature-Invariant Viscoelasticity From −196 to 1000 °C
,”
Science
,
330
, pp.
1364
1368
.10.1126/science.1194865
5.
Xu
,
M.
,
Futaba
,
D. N.
,
Yumura
,
T.
, and
Hata
,
K.
,
2011
, “
Carbon Nanotubes With Temperature-Invariant Creep and Creep-Recovery From −190 to 970 °C
,”
Adv. Mater.
,
23
, pp.
3686
3690
.10.1002/adma.201101412
6.
Zhang
,
Q.
,
Lu
,
Y. C.
,
Du
,
F.
,
Dai
,
L.
,
Baur
,
J.
, and
Foster
,
D. C.
,
2010
, “
Viscoelastic Creep of Vertically Aligned Carbon Nanotubes
,”
J. Phys. D: Appl. Phys.
,
43
, p.
315401
.10.1088/0022-3727/43/31/315401
7.
Mesarovic
,
S. D.
,
McCarter
,
C. M.
,
Bahr
,
D. F.
,
Radhakrishnan
,
H.
,
Richards
,
R. F.
,
Richards
,
C. D.
,
McClain
,
D.
, and
Jiao
,
J.
,
2007
, “
Mechanical Behavior of a Carbon Nanotube Turf
,”
Scr. Mater.
,
56
, pp.
157
160
.10.1016/j.scriptamat.2006.09.021
8.
McCarter
,
C. M.
,
Richards
,
R. F.
,
Mesarovic
,
S. D.
,
Richards
,
C. D.
,
Bahr
,
D. F.
,
McClain
,
D.
, and
Jiao
,
J.
,
2006
, “
Mechanical Compliance of Photolithographically Defined Vertically Aligned Carbon Nanotube Turf
,”
J. Mater. Sci.
,
41
, pp.
7872
7878
.10.1007/s10853-006-0870-5
9.
Pathak
,
S.
,
Lim
,
E.
,
Pour Shahid Saeed Abadi
,
P.
,
Graham
,
S.
,
Cola
,
B.
, and
Greer
,
J. R.
,
2012
, “
Higher Recovery and Better Energy Dissipation at Faster Strain Rates in Carbon Nanotube Bundles: An In-Situ Study
,”
ACS Nano
,
26
, pp.
2189
2197
.10.1021/nn300376j
10.
Suhr
,
J.
,
Victor
,
P.
,
Sreekala
,
L. C. S.
,
Zhang
,
X.
,
Nalamasu
,
O.
, and
Ajayan
,
P. M.
,
2007
, “
Fatigue Resistance of Aligned Carbon Nanotube Arrays Under Cyclic Compression
,”
Nat. Nanotech.
,
2
, pp.
417
421
.10.1038/nnano.2007.186
11.
Yaglioglu
,
O.
,
Cao
,
A.
,
Hart
,
A. J.
,
Martens
,
R.
, and
Slocum
,
A. H.
,
2012
, “
Wide Range Control of Microstructure and Mechanical Properties of Carbon Nanotube Forests: A Comparison Between Fixed and Floating Catalyst CVD Techniques
,”
Adv. Func. Mats.
,
22
, pp.
5028
5037
.10.1002/adfm.201200852
12.
Zbib
,
A. A.
,
Mesarovic
,
S. D.
,
Lilleodden
,
E. T.
,
McClain
,
D.
,
Jiao
,
J.
, and
Bahr
,
D. F.
,
2008
, “
The Coordinated Buckling of Carbon Nanotube Turfs Under Uniform Compression
,”
Nanotechnology
,
19
, p.
175704
.10.1088/0957-4484/19/17/175704
13.
Hutchens
,
S. B.
,
Hall
,
L. J.
, and
Greer
,
J. R.
,
2010
, “
In Situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles
,”
Adv. Func. Mats.
,
20
, pp.
2338
2346
.10.1002/adfm.201000305
14.
Yaglioglu
,
O.
,
2007
, “
Carbon Nanotube Based Electromechanical Probes
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
15.
Pathak
,
S.
,
Mohan
,
N.
,
Pour Shahid Saeed Abadia
,
P.
,
Graham
,
S.
,
Cola
,
B. A.
, and
Greer
,
J. R.
,
2013
, “
Compressive Response of Vertically Aligned Carbon Nanotube Films Gleaned From In Situ Flat-Punch Indentations
,”
J. Mater. Res.
,
28
(
7
), pp. 984–997.10.1557/jmr.2012.366
16.
Cao
,
C.
,
Reiner
,
A.
,
Chung
,
C.
,
Chang
,
S.-H.
,
Kao
,
I.
,
Kukta
,
R. V.
, and
Korach
,
C. S.
,
2011
, “
Buckling Initiation and Displacement Dependence in Compression of Vertically Aligned Carbon Nanotube Arrays
,”
Carbon
,
49
, pp.
3190
3195
.10.1016/j.carbon.2011.03.043
17.
Maschmann
,
M. R.
,
Qiuhong
,
Z.
,
Feng
,
D.
,
Liming
,
D.
, and
Baur
J.
,
2011
, “
Length Dependent Foam-Like Mechanical Response of Axially Indented Vertically Oriented Carbon Nanotube Arrays
,”
Carbon
,
49
, pp.
386
397
.10.1016/j.carbon.2010.09.034
18.
Raney
,
J. R.
,
Fraternali
,
F.
,
Amendola
,
A.
, and
Daraio
,
C.
,
2011
, “
Modeling and In Situ Identification of Material Parameters for Layered Structures Based on Carbon Nanotube Arrays
,”
Compos. Struct.
,
93
, pp.
3013
3018
.10.1016/j.compstruct.2011.04.034
19.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2008
, “
Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays
,”
Nano Letts.
,
8
, pp.
511
515
.10.1021/nl072709a
20.
Qiu
,
A.
,
Bahr
,
D. F.
,
Zbib
,
A. A.
,
Bellou
,
A.
,
Mesarovic
,
S. D.
,
McClain
,
D.
,
Hudson
,
W.
,
Jiao
,
J.
,
Kiener
,
D.
, and
Cordill
,
M. D.
,
2011
, “
Local and Non-Local Behavior and Coordinated Buckling of CNT Turfs
,”
Carbon
,
49
, pp.
1430
1438
.10.1016/j.carbon.2010.12.011
21.
Bradford
,
P. D.
,
Wang
,
X.
,
Zhao
,
H.
, and
Zhu
,
Y. T.
,
2011
, “
Tuning the Compressive Mechanical Properties of Carbon Nanotube Foam
,”
Carbon
,
49
, pp.
2834
2841
.10.1016/j.carbon.2011.03.012
22.
Hutchens
,
S. B.
,
Needleman
,
A.
, and
Greer
,
J. R.
,
2011
, “
Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
59
, pp.
2227
2237
,10.1016/j.jmps.2011.05.002
Errata
60
, pp.
1753
1756
(
2012
).
23.
Needleman
,
A.
,
Hutchens
,
S. B.
,
Mohan
,
N.
, and
Greer
,
J. R.
,
2012
Deformation of Plastically Compressible Hardening-Softening-Hardening Solids
,”
Acta Mech. Sinica
,
28
, pp.
1115
1124
.10.1007/s10409-012-0117-4
24.
Pathak
,
S.
,
Mohan
,
N.
,
Decolvenaere
,
E.
,
Needleman
,
A.
,
Bedewy
,
M.
,
Hart
,
A. J.
, and
Greer
,
J. R.
,
2013
, “
Influence of Density Gradients on the Stress-Strain Response of Carbon Nanotube Micropillars
,” (submitted).
25.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
,
2009
, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3490
3503
.10.1016/j.ijheatmasstransfer.2009.03.011
26.
Cho
,
C.
,
Richards
,
D.
,
Bahr
,
Jiao
,
J.
, and
Richards
,
R.
,
2008
, “
Evaluation of Contacts for a MEMS Thermal Switch
,”
J. Micromech. Microeng.
,
18
, p.
105012
.10.1088/0960-1317/18/10/105012
27.
Considére
,
A.
,
1885
, “
L'Emploi du fer et de l'acier
,”
Ann. Ponts Chaussées
,
9
, Ser. 6, pp.
574
775
.
28.
Ericksen
,
J. L.
,
1975
, “
Equilibrium of Bars
,”
J. Elast.
,
5
, pp.
191
201
.10.1007/BF00126984
29.
Hutchinson
,
J. W.
, and
Neale
,
K. W.
,
1977
, “
Influence of Strain Rate Sensitivity on Necking Under Uniaxial Tension
,”
Acta Metall.
25
, pp.
839
846
.10.1016/0001-6160(77)90168-7
30.
James
,
R. D.
,
1979
, “
Co-Existent Phases in the One Dimensional Static Theory of Elastic Bars
,”
Arch. Rat. Mech. Anal.
,
72
, pp.
99
140
.10.1007/BF00249360
31.
Hutchinson
,
J. W.
, and
Neale
,
K. W.
,
1983
, “
Neck Propagation
,”
J. Mech. Phys. Solids
,
31
, pp.
405
426
.10.1016/0022-5096(83)90007-8
32.
Abeyaratene
,
R.
, and
Knowles
,
J. K.
,
1993
, “
A Continuum Model of a Thermoelastic Solid Capable of Undergoing Phase Transitions
,”
J. Mech. Phys. Solids
,
41
, pp.
541
571
.10.1016/0022-5096(93)90048-K
33.
Needleman
,
A.
,
1988
, “
Material Rate Dependence and Mesh Sensitivity in Localization Problems
,”
Comp. Meth. Appl. Mech. Eng.
,
67
, pp.
69
85
.10.1016/0045-7825(88)90069-2
34.
Needleman
,
A.
,
1999
Plastic Strain Localization in Metals
,”
The Integration of Material, Process and Product Design
, L. Lalli, N. Zabaras, R. Becker, and S. Ghosh, eds.,
A. A. Balkema
,
Rotterdam
, pp.
59
70
.
35.
Chater
,
E.
, and
Hutchinson
,
J. W.
,
1984
, “
On the Propagation of Bulges and Buckles
,”
ASME J. Appl. Mech.
,
51
, pp.
269
277
.10.1115/1.3167611
36.
Graff
,
S.
,
Forest
,
S.
,
Strudel
,
J.-L.
,
Prioul
,
C.
,
Pilvin
,
P.
,
Béchade
,
J.-L.
,
2004
, “
Strain Localization Phenomena Associated With Static and Dynamic Strain Ageing in Notched Specimens: Experiments and Finite Element Simulations
,”
Mater. Sci. Eng. A
,
387–389
, pp.
181
185
.10.1016/j.msea.2004.02.083
37.
Hutchinson
,
J. W.
, and
Miles
,
J. P.
,
1974
, “
Bifurcation Analysis of the Onset of Necking in an Elastic/Plastic Cylinder Under Uniaxial Tension
,”
J. Mech. Phys. Solids
,
22
, pp.
61
71
.10.1016/0022-5096(74)90014-3
38.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1975
, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
, pp.
371
394
.10.1016/0022-5096(75)90001-0
39.
Ballarin
,
V.
,
Soler
,
M.
,
Perlade
,
A.
,
Lemoine
,
X.
, and
Forest
,
S.
,
2009
, “
Mechanisms and Modeling of Bake-Hardening Steels—Part I: Uniaxial Tension
,”
Metall. Mater. Trans. A
,
40
, pp.
1367
1374
.10.1007/s11661-009-9813-5
You do not currently have access to this content.