We explore here the structural stability and fracture of supported graphene sheets under pressure loadings normal to the sheets by performing molecular dynamics simulations. The results show that, in absence of defects, supported graphene deforms into an inverse bubble shape and fracture is nucleated at the supported edges. The critical pressure decreases from ideal tensile strength of graphene in biaxial tension as the size of supporting pores increases. When nanoscale holes are created in the suspended region of graphene, the critical pressure is further lowered with the area of nanoholes, with additional dependence on their shapes. The results are explained by analyzing the deformed profile of graphene sheets under pressure and the stress state.

References

References
1.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
, pp.
385
388
.10.1126/science.1157996
2.
Booth
,
T. J.
,
Blake
,
P.
,
Nair
,
R. R.
,
Jiang
,
D.
,
Hill
,
E. W.
,
Bangert
,
U.
,
Bleloch
,
A.
,
Gass
,
M.
,
Novoselov
,
K. S.
,
Katsnelson
,
M. I.
, and
Geim
,
A. K.
,
2008
, “
Macroscopic Graphene Membranes and Their Extraordinary Stiffness
,”
Nano Lett.
,
8
, pp.
2442
2446
.10.1021/nl801412y
3.
Xu
,
Z.
,
2009
, “
Graphene Nano-Ribbons Under Tension
,”
J. Comput. Theor. Nanosci.
,
6
, pp.
625
628
.10.1166/jctn.2009.1082
4.
Lu
,
Q.
,
Gao
,
W.
, and
Huang
,
R.
,
2011
, “
Atomistic Simulation and Continuum Modeling of Graphene Nanoribbons Under Uniaxial Tension
,”
Modell. Simul. Mater. Sci. Eng.
,
19
, p.
054006
.10.1088/0965-0393/19/5/054006
5.
Song
,
Z.
,
Artyukhov
,
V. I.
,
Yakobson
,
B. I.
, and
Xu
,
Z.
,
2013
, “
Pseudo Hall-Petch Strength Reduction in Polycrystalline Graphene
,”
Nano Lett.
,
13
, pp.
1829
1833
.10.1021/nl3038147
6.
Zhang
,
T.
,
Li
,
X.
,
Kadkhodaei
,
S.
, and
Gao
,
H.
,
2012
, “
Flaw Insensitive Fracture in Nanocrystalline Graphene
,”
Nano Lett.
,
12
, pp.
4605
4610
.10.1021/nl301908b
7.
Chen
,
H.
,
Müller
,
M. B.
,
Gilmore
,
K. J.
,
Wallace
,
G. G.
, and
Li
,
D.
,
2008
, “
Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper
,”
Adv. Mater.
,
20
, pp.
3557
3561
.10.1002/adma.200800757
8.
Liu
,
Y.
,
Xie
,
B.
,
Zhang
,
Z.
,
Zheng
,
Q.
, and
Xu
,
Z.
,
2012
, “
Mechanical Properties of Graphene Papers
,”
J. Mech. Phys. Solids
,
60
, pp.
591
605
.10.1016/j.jmps.2012.01.002
9.
Bunch
,
J. S.
,
van der Zande
,
A. M.
,
Verbridge
,
S. S.
,
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2007
, “
Electromechanical Resonators From Graphene Sheets
,”
Science
,
315
, pp.
490
493
.10.1126/science.1136836
10.
Koenig
,
S. P.
,
Wang
,
L.
,
Pellegrino
,
J.
, and
Bunch
,
J. S.
,
2012
, “
Selective Molecular Sieving Through Porous Graphene
,”
Nature Nanotech.
,
7
, pp.
728
732
.10.1038/nnano.2012.162
11.
Jiang
,
D.
,
Cooper
,
V. R.
, and
Dai
,
S.
,
2009
, “
Porous Graphene as the Ultimate Membrane for Gas Separation
,”
Nano Lett.
,
9
, pp.
4019
4024
.10.1021/nl9021946
12.
Cohen-Tanugi
,
D.
, and
Grossman
,
J. C.
,
2012
, “
Water Desalination Across Nanoporous Graphene
,”
Nano Lett.
,
12
, pp.
3602
3608
.10.1021/nl3012853
13.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
14.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
, pp.
783
802
.10.1088/0953-8984/14/4/312
15.
Yue
,
K.
,
Gao
,
W.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2012
, “
Analytical Methods for the Mechanics of Graphene Bubbles
,”
J. Appl. Phys.
,
112
, p.
083512
.10.1063/1.4759146
16.
Sorkin
,
V.
, and
Zhang
,
Y.
,
2011
, “
Graphene-Based Pressure Nano-Sensors
,”
J. Mol. Model.
,
17
, pp.
2825
2830
.10.1007/s00894-011-0972-0
You do not currently have access to this content.