In this paper we attempt to answer two questions on graphene from a mechanic's viewpoint: why does this one-atom-thick monolayer have finite bending stiffness to ensure its stability? and what is its wrinkle mechanism? As for the first question, it is found that the repulsive residual internal moment in the bond angle can lead to a nonzero bending stiffness, which makes the graphene flat. Together with long-range attraction among atoms, such as van der Waals forces, a graphene prefers to have a self-buckling wrinkled configuration with many waves.

References

References
1.
Mermin
,
N. D.
,
1968
, “
Crystalline Order in Two Dimensions
,”
Phys. Rev.
,
176
(
1
), p.
250
.10.1103/PhysRev.176.250
2.
Landau
,
L. L. D.
,
Lifshits
,
E. M.
, and
Pitaevskii
,
L. L. P.
,
1980
,
Statistical Physics: Theory of the Condensed State
,
Butterworth-Heinemann
,
London
.
3.
Le Doussal
,
P.
, and
Radzihovsky
,
L.
,
1992
, “
Self-Consistent Theory of Polymerized Membranes
,”
Phys. Rev. Lett.
,
69
(
8
), pp.
1209
1212
.10.1103/PhysRevLett.69.1209
4.
Venables
,
J. A.
,
Spiller
,
G. D. T.
, and
Hanbucken
,
M.
,
1984
, “
Nucleation and Growth of Thin-Films
,”
Rep. Progress Phys.
,
47
(
4
), pp.
399
459
.10.1088/0034-4885/47/4/002
5.
Zinkeallmang
,
M.
,
Feldman
,
L. C.
, and
Grabow
,
M. H.
,
1992
, “
Clustering on Surfaces
,”
Surf. Sci. Rep.
,
16
(
8
), pp.
377
463
.10.1016/0167-5729(92)90006-W
6.
Evans
,
J. W.
,
Thiel
,
P. A.
, and
Bartelt
,
M. C.
,
2006
, “
Morphological Evolution During Epitaxial Thin Film Growth: Formation of 2D Islands and 3D Mounds
,”
Surf. Sci. Rep.
,
61
(
1–2
), pp.
1
128
.10.1016/j.surfrep.2005.08.004
7.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Katsnelson
,
M. I.
,
Grigorieva
,
I. V.
,
Dubonos
,
S. V.
, and
Firsov
,
A. A.
,
2005
, “
Two-Dimensional Gas of Massless Dirac Fermions in Graphene
,”
Nature
,
438
(
7065
), pp.
197
200
.10.1038/nature04233
8.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.10.1126/science.1102896
9.
Ma
,
T. H.
,
Li
,
B.
, and
Chang
,
T. C.
,
2011
, “
Chirality- and Curvature-Dependent Bending Stiffness of Single Layer Graphene
,”
Appl. Phys. Lett.
,
99
(
20
), p.
201901
.10.1063/1.3660739
10.
Lu
,
Q.
,
Arroyo
,
M.
, and
Huang
,
R.
,
2009
, “
Elastic Bending Modulus of Monolayer Graphene
,”
J. Phys. D
,
42
(
10
), p.
102002
.10.1088/0022-3727/42/10/102002
11.
Guo
,
X.
, and
Zhang
,
T.
,
2010
, “
A Study on the Bending Stiffness of Single-Walled Carbon Nanotubes and Related Issues
,”
J. Mech. Phys. Solids
,
58
(
3
), pp.
428
443
.10.1016/j.jmps.2009.11.001
12.
Wang
,
J. B.
,
Guo
,
X.
, and
Zhang
,
H. W.
,
2009
, “
A Revisit of the Bending Stiffness of Graphite Sheet and Single-Walled Carbon Nanotubes
,”
J. Comput. Theor. Nanosci.
,
6
(
10
), pp.
2242
2246
.10.1166/jctn.2009.1280
13.
Meyer
,
J. C.
,
Geim
,
A. K.
,
Katsnelson
,
M. I.
,
Novoselov
,
K. S.
,
Booth
,
T. J.
, and
Roth
,
S.
,
2007
, “
The Structure of Suspended Graphene Sheets
,”
Nature
,
446
(
7131
), pp.
60
63
.10.1038/nature05545
14.
Fasolino
,
A.
,
Los
,
J. H.
, and
Katsnelson
,
M. I.
,
2007
, “
Intrinsic Ripples in Graphene
,”
Nat. Mater.
,
6
(
11
), pp.
858
861
.10.1038/nmat2011
15.
Bao
,
W. Z.
,
Miao
,
F.
,
Chen
,
Z.
,
Zhang
,
H.
,
Jang
,
W. Y.
,
Dames
,
C.
, and
Lau
,
C. N.
,
2009
, “
Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes
,”
Nat. Nanotechnol.
,
4
(
9
), pp.
562
566
.10.1038/nnano.2009.191
16.
Chang
,
T. C.
, and
Gao
,
H. J.
,
2003
, “
Size-Dependent Elastic Properties of a Single-Walled Carbon Nanotube Via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
,
51
(
6
), pp.
1059
1074
.10.1016/S0022-5096(03)00006-1
17.
Li
,
C. Y.
, and
Chou
,
T. W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2487
2499
.10.1016/S0020-7683(03)00056-8
18.
Hashemnia
,
K.
,
Farid
,
M.
, and
Vatankhah
,
R.
,
2009
, “
Vibrational Analysis of Carbon Nanotubes and Graphene Sheets Using Molecular Structural Mechanics Approach
,”
Comput. Mater. Sci.
,
47
(
1
), pp.
79
85
.10.1016/j.commatsci.2009.06.016
19.
Sakhaee-Pour
,
A.
,
2009
, “
Elastic Buckling of Single-Layered Graphene Sheet
,”
Comput. Mater. Sci.
,
45
(
2
), pp.
266
270
.10.1016/j.commatsci.2008.09.024
20.
Shi
,
M. X.
,
Liu
,
B.
,
Zhang
,
Z. Q.
,
Zhang
,
Y. W.
, and
Gao
,
H. J.
,
2012
, “
Direct Influence of Residual Stress on the Bending Stiffness of Cantilever Beams
,”
Proc. R. Soc. A
,
468
(
2145
), pp.
2595
2613
.10.1098/rspa.2011.0662
21.
Sanchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejon
,
P.
,
1999
, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
19
), pp.
12678
12688
.10.1103/PhysRevB.59.12678
22.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
,
2002
, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
,
65
(
23
), p.
235430
.10.1103/PhysRevB.65.235430
23.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
(
4
), pp.
783
802
.10.1088/0953-8984/14/4/312
24.
Zhang
,
P.
,
Jiang
,
H.
,
Huang
,
Y.
,
Geubelle
,
P. H.
, and
Hwang
,
K. C.
,
2004
, “
An Atomistic-Based Continuum Theory for Carbon Nanotubes: Analysis of Fracture Nucleation
,”
J. Mech. Phys. Solids
,
52
(
5
), pp.
977
998
.10.1016/j.jmps.2003.09.032
25.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2008
, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
279
292
.10.1016/j.jmps.2007.05.008
26.
Deng
,
Z.
,
Klimov
,
N. N.
,
Solares
,
S. D.
,
Li
,
T.
,
Xu
,
H.
, and
Cannara
,
R. J.
,
2013
, “
Nanoscale Interfacial Friction and Adhesion on Supported Versus Suspended Monolayer and Multilayer Graphene
,”
Langmuir
,
29
(
1
), pp.
235
243
.10.1021/la304079a
27.
Rappe
,
A. K.
,
Casewit
,
C. J.
,
Colwell
,
K. S.
,
Goddard
,
W. A.
, and
Skiff
,
W. M.
,
1992
, “
UFF, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations
,”
J. Am. Chem. Soc.
,
114
(
25
), pp.
10024
10035
.10.1021/ja00051a040
28.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
,
2004
, “
The Atomic-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1849
1864
.10.1016/j.cma.2003.12.037
29.
Liu
,
B.
,
Jiang
,
H.
,
Huang
,
Y.
,
Qu
,
S.
,
Yu
,
M. F.
, and
Hwang
,
K. C.
,
2005
, “
Atomic-Scale Finite Element Method in Multiscale Computation With Applications to Carbon Nanotubes
,”
Phys. Rev. B
,
72
(
3
), p.
8
.http://dx.doi.org/10.1103/PhysRevB.72.035435
30.
Liu
,
B.
, and
Huang
,
Y.
,
2008
, “
The Stable Finite Element Method for Minimization Problems
,”
J. Comput. Theor. Nanosci.
,
5
(
7
), pp.
1251
1254
.10.1166/jctn.2008.007
31.
Park
,
S. I.
,
Ahn
,
J. H.
,
Feng
,
X.
,
Wang
,
S. D.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2008
, “
Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates
,”
Adv. Funct. Mater.
,
18
(
18
), pp.
2673
2684
.10.1002/adfm.200800306
You do not currently have access to this content.