Among the many potential two-dimensional carbon allotropes inspired by graphene, graphynes have received exceptional attention recently. Graphynes exhibit remarkable mechanical properties depending on their structure. The similar structure and two-dimensional nature of these materials yield many properties that are similar to those of graphene, but the presence of heterogeneous bond types is expected to lead to distinct properties. The main subject of this work is graphdiyne, one of the few graphynes that has been fabricated in large quantities. In this paper, we perform fracture analysis on graphdiyne and find a delocalized failure mechanism in which a crack propagates along a diagonal with respect its original direction. The covalence of the material allows for this simple but intriguing phenomenon to be investigated. Graphene is also tested to compare the behavior. This mechanism has implications for the toughness and robustness of this material, which is topical for many device applications recently proposed in the literature. Further, connections of such delocalized failure mechanisms are made to that of hidden length and sacrificial bonding in some biological systems such as proteins, bone, and nacre.

References

References
1.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nature Mater.
,
6
(
3
), pp.
183
191
.10.1038/nmat1849
2.
Saito
,
R.
,
Fujita
,
M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1992
, “
Electronic-Structure of Graphene Tubules Based on C-60
,”
Phys. Rev. B
,
46
(
3
), pp.
1804
1811
.10.1103/PhysRevB.46.1804
3.
Saito
,
R.
,
Fujita
,
M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1992
, “
Electronic-Structure of Chiral Graphene Tubules
,”
Appl. Phys. Lett.
,
60
(
18
), pp.
2204
2206
.10.1063/1.107080
4.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “Electric Field Effect in Atomically Thin Carbon Films,”
Science
,
306
(
5696
), pp.
666
669
.10.1126/science.1102896
5.
Kim
,
K. S.
,
Zhao
,
Y.
,
Jang
,
H.
,
Lee
,
S. Y.
,
Kim
,
J. M.
,
Kim
,
K. S.
,
Ahn
,
J. H.
,
Kim
,
P.
,
Choi
,
J. Y.
, and
Hong
,
B. H.
,
2009
, “
Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes
,”
Nature
,
457
(
7230
), pp.
706
710
.10.1038/nature07719
6.
Hirsch
,
A.
,
2010
, “
The Era of Carbon Allotropes
,”
Nature Mater.
,
9
(
11
), pp.
868
871
.10.1038/nmat2885
7.
Enyashin
,
A. N.
, and
Ivanovskii
,
A. L.
,
2011
, “
Graphene Allotropes
,”
Phys. Status Solidi B
,
248
(
8
), pp.
1879
1883
.10.1002/pssb.201046583
8.
Haley
,
M. M.
,
Brand
,
S. C.
, and
Pak
,
J. J.
,
1997
, “
Carbon Networks Based on Dehydrobenzoannulenes: Synthesis of Graphdiyne Substructures
,”
Angew. Chem., Int., Ed.
,
36
(
8
), pp.
836
838
.10.1002/anie.199708361
9.
Haley
,
M. M.
,
2008
, “
Synthesis and Properties of Annulenic Subunits of Graphyne and Graphdiyne Nanoarchitectures
,”
Pure Appl. Chem.
,
80
(
3
), pp.
519
532
.10.1351/pac200880030519
10.
Li
,
G. X.
,
Li
,
Y. L.
,
Liu
,
H. B.
,
Guo
,
Y. B.
,
Li
,
Y. J.
, and
Zhu
,
D. B.
,
2010
, “
Architecture of Graphdiyne Nanoscale Films
,”
Chem. Commun. (Cambridge)
,
46
(
19
), pp.
3256
3258
.10.1039/b922733d
11.
Ivanovskii
,
A. L.
,
2013
, “
Graphynes and Graphdyines
,”
Prog. Solid State Chem.
,
41
(
1–2
), pp.
1
19
.10.1016/j.progsolidstchem.2012.12.001
12.
Malko
,
D.
,
Neiss
,
C.
,
Vines
,
F.
, and
Gorling
,
A.
,
2012
, “
Competition for Graphene: Graphynes With Direction-Dependent Dirac Cones
,”
Phys. Rev. Lett.
,
108
(
8
), p. 086804.10.1103/PhysRevLett.108.086804
13.
Long
,
M. Q.
,
Tang
,
L.
,
Wang
,
D.
,
Li
,
Y. L.
, and
Shuai
,
Z. G.
,
2011
, “
Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions
,”
ACS Nano
,
5
(
4
), pp.
2593
2600
.10.1021/nn102472s
14.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2012
, “
Selective Hydrogen Purification Through Graphdiyne Under Ambient Temperature and Pressure
,”
Nanoscale
,
4
(
15
), pp.
4587
4593
.10.1039/c2nr30921a
15.
Sun
,
C.
, and
Searles
,
D. J.
,
2012
, “
Lithium Storage on Graphdiyne Predicted by DFT Calculations
,”
J. Phys. Chem. C
,
116
(
50
), pp.
26222
26226
.10.1021/jp309638z
16.
Robertson
,
A. W.
,
Allen
,
C. S.
,
Wu
,
Y. A.
,
He
,
K.
,
Olivier
,
J.
,
Neethling
,
J.
,
Kirkland
,
A. I.
, and
Warner
,
J. H.
,
2012
, “
Spatial Control of Defect Creation in Graphene at the Nanoscale
,”
Nat Commun.
,
3
, p.
1144
.10.1038/ncomms2141
17.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2011
, “
Mechanical Properties of Graphyne
,”
Carbon
,
49
(
13
), pp.
4111
4121
.10.1016/j.carbon.2011.05.024
18.
Cranford
,
S. W.
,
Brommer
,
D. B.
, and
Buehler
,
M. J.
,
2012
, “
Extended Graphynes: Simple Scaling Laws for Stiffness, Strength and Fracture
,”
Nanoscale
,
4
(
24
), pp.
7797
7809
.10.1039/c2nr31644g
19.
Peng
,
Q.
,
Ji
,
W.
, and
De
,
S.
,
2012
, “
Mechanical Properties of Graphyne Monolayers: A First-Principles Study
,”
Phys. Chem. Chem. Phys.
,
14
(
38
), pp.
13385
13391
.10.1039/c2cp42387a
20.
Kang
,
J.
, Li, J. B., Wu, F. M., Li, S. S., and Xia, J. B.,
2011
, “
Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet
,”
J. Phys. Chem. C
,
115
(
42
), pp.
20466
20470
.10.1021/jp206751m
21.
Pei
,
Y.
,
2012
, “
Mechanical Properties of Graphdiyne Sheet
,”
Physica B
,
407
(
22
), pp.
4436
4439
.10.1016/j.physb.2012.07.026
22.
Zhang
,
Y. Y.
,
Pei
,
Q. X.
, and
Wang
,
C. M.
,
2012
, “
Mechanical Properties of Graphynes Under Tension: A Molecular Dynamics Study
,”
Appl. Phys. Lett.
,
101
(
8
), p. 081909.10.1063/1.4747719
23.
Yang
,
Y. L.
, and
Xu
,
X. M.
,
2012
, “
Mechanical Properties of Graphyne and Its Family—A Molecular Dynamics Investigation
,”
Comput. Mater. Sci.
,
61
, p.
83
88
.10.1016/j.commatsci.2012.03.052
24.
Lee
,
C.
, Wei, X. D., Kysar, J. W., and Hone, J.,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
25.
Liu
,
F.
,
Ming
,
P. M.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
(
6
), p. 064120.10.1103/PhysRevB.76.064120
26.
Zhang
,
J. F.
,
Zhao
,
J. J.
, and
Lu
,
J. P.
,
2012
, “
Intrinsic Strength and Failure Behaviors of Graphene Grain Boundaries
,”
ACS Nano
,
6
(
3
), pp.
2704
2711
.10.1021/nn3001356
27.
Kim
,
K.
, Artyukhov, V. I., Regan, W., Liu, Y. Y., Crommie, M. F., Yakobson, B. I., and Zettl, A.,
2012
, “
Ripping Graphene: Preferred Directions
,”
Nano Lett.
,
12
(
1
), pp.
293
297
.10.1021/nl203547z
28.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
29.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2011
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
.10.1021/jp004368u
30.
Flores
,
M. Z. S.
,
Autreto
,
P. A. S.
,
Legoas
,
S. B.
, and
Galvao
,
D. S.
,
2009
, “
Graphene to Graphane: A Theoretical Study
,”
Nanotechnology
,
20
(
46
), p. 465704.10.1088/0957-4484/20/46/465704
31.
Sen
,
D.
,
Novoselov
,
K. S.
,
Reis
,
P. M.
, and
Buehler
,
M. J.
,
2010
, “
Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons
,”
Small
,
6
(
10
), pp.
1108
1116
.10.1002/smll.201000097
32.
Tsai
,
D. H.
,
1979
, “
Virial Theorem and Stress Calculation in Molecular-Dynamics
,”
J. Chem. Phys.
,
70
(
3
), pp.
1375
1382
.10.1063/1.437577
33.
Zimmerman
,
J. A.
,
Webb
,
E. B.
,
Hoyt
,
J. J.
,
Jones
,
R. E.
,
Klein
,
P. A.
, and
Bammann
,
D. J.
,
2004
, “
Calculation of Stress in Atomistic Simulation Modelling and Simulation
,”
Mater. Sci. Eng.
,
12
(
4
), pp.
S319
S332
.10.1088/0965-0393/12/4/S03
34.
Zhao
,
H.
, and
Aluru
,
N. R.
,
2010
, “
Temperature and Strain-Rate Dependent Fracture Strength of Graphene
,”
J. Appl. Phys.
,
108
(
6
), p. 064321.10.1063/1.3488620
35.
Ni
,
Z. H.
, Bu, H., Zou, M., Yi, H., Bi, K. D., and Chen, Y. F.,
2010
, “
Anisotropic Mechanical Properties of Graphene Sheets From Molecular Dynamics
,”
Physica B
,
405
(
5
), pp.
1301
1306
.10.1016/j.physb.2009.11.071
36.
Chuvilin
,
A. M. J. C.
,
Algara-Siller
,
G.
,
Kaiser
,
U.
,
2009
, “
From Graphene Constrictions to Single Carbon Chains
,”
New J. Phys.
,
11
(
8
), p. 083019.10.1088/1367-2630/11/8/083019
37.
Moras
,
G.
, Pastewka, L., Walter, M., Schnagl, J., Gumbsch, P., and Moseler, M.,
2011
, “
Progressive Shortening of sp-Hybridized Carbon Chains Through Oxygen-Induced Cleavage
,”
J. Phys. Chem. C
,
115
(
50
), pp.
24653
24661
.10.1021/jp209198g
38.
Tykwinski
,
R. R.
, Chalifoux, W., Eisler, S., Lucotti, A., Tommasini, M., Fazzi, D., Del Zoppo, M., and Zerbi, G.,
2010
, “
Toward Carbyne: Synthesis and Stability of Really Long Polyynes
,”
Pure Appl. Chem.
,
82
(
4
), pp.
891
904
.10.1351/PAC-CON-09-09-04
39.
Fantner
,
G. E.
, Hassenkam, T., Kindt, J. H., Weaver, J. C., Birkedal, H., Pechenik, L., Cutroni, J. A., Cidade, G. A. G., Stucky, G. D., Morse, D. E., and Hansma, P. K.,
2005
, “
Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture
,”
Nature Mater.
,
4
(
8
), pp.
612
616
.10.1038/nmat1428
40.
Fantner
,
G. E.
, Oroudjev, E., Schitter, G., Golde, L. S., Thurner, P., Finch, M. M., Turner, P., Gutsmann, T., Morse, D. E., Hansma, H., and Hansma, P. K.,
2006
Sacrificial Bonds and Hidden Length: Unraveling Molecular Mesostructures in Tough Materials
,”
Biophys. J.
,
90
(
4
), pp.
1411
1418
.10.1529/biophysj.105.069344
41.
Espinosa
,
H. D.
, Rim, J. E., Barthelat, F., and Buehler, M. J.,
2009
, “
Merger of Structure and Material in Nacre and Bone—Perspectives on de Novo Biomimetic Materials
,”
Prog. Mater. Sci.
,
54
(
8
), pp.
1059
1100
.10.1016/j.pmatsci.2009.05.001
42.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nature Mater.
,
2
(
3
), pp.
164
168
.10.1038/nmat832
43.
Dimas
,
L. S.
, and
Buehler
,
M. J.
,
2012
, “
Influence of Geometry on Mechanical Properties of Bio-Inspired Silica-Based Hierarchical Materials
,”
Bioinspir. Biomim.
,
7
(
3
), p.
036024
.10.1088/1748-3182/7/3/036024
44.
Qin
,
Z.
, and
Buehler
,
M. J.
,
2010
Cooperative Deformation of Hydrogen Bonds in Beta-Strands and Beta-Sheet Nanocrystals
,”
Phys. Rev. E
,
82
(
6
), p. 061906.10.1103/PhysRevE.82.061906
45.
Diao
,
J. K.
,
Gall
,
K.
, and
Dunn
,
M. L.
,
2004
, “
Yield Strength Asymmetry in Metal Nanowires
,”
Nano Lett.
,
4
(
10
), pp.
1863
1867
.10.1021/nl0489992
You do not currently have access to this content.