Oscillators composed of incommensurate graphene sheets have been investigated by molecular dynamics simulations. The oscillation frequencies can reach tens of gigahertz range and depend on the surface energy of the bilayer graphene and the oscillatory amplitude. We demonstrate the tunability of such an oscillator in terms of frequency and friction by its varying geometric parameters. Exploration of the damping mechanism by combining the autocorrelation function theory and the direct atomistic simulations reveals that the friction force is proportional to the velocity of oscillatory motion. The results should help optimize the design of graphene-based nanoelectromechanical devices.
Issue Section:
Research Papers
References
1.
Zheng
, Q.
, Jiang
, B.
, Liu
, S.
, Weng
, Y.
, Lu
, L.
, Xue
, Q.
, Zhu
, J.
, Jiang
, Q.
, Wang
, S.
, and Peng
, L.
, 2008
, “Self-Retracting Motion of Graphite Microflakes
,” Phys. Rev. Lett.
, 100
(6
), p. 067205
.10.1103/PhysRevLett.100.0672052.
Popov
, A. M.
, Lebedeva
, I. V.
, Knizhnik
, A. A.
, Lozovik
, Y. E.
, and Potapkin
, B. V.
, 2011
, “Molecular Dynamics Simulation of the Self-Retracting Motion of a Graphene Flake
,” Phys. Rev. B
, 84
(24
), p. 245437
.10.1103/PhysRevB.84.2454373.
Lee
, C.
, Wei
, X.
, Kysar
, J. W.
, and Hone
, J.
, 2008
, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,” Science
, 321
(5887
), pp. 385
–388
.10.1126/science.11579964.
Kis
, A.
, and Zettl
, A.
, 2008
, “Nanomechanics of Carbon Nanotubes
,” Philos. Trans. A Math. Phys. Eng. Sci.
, 366
(1870
), pp. 1591
–1611
.10.1098/rsta.2007.21745.
Lebedeva
, I. V.
, Knizhnik
, A. A.
, Popov
, A. M.
, Lozovik
, Y. E.
, and Potapkin
, B. V.
, 2012
, “Modeling of Graphene-Based NEMS
,” Phys. E
, 44
(6
), pp. 949
–954
.10.1016/j.physe.2011.07.0186.
Cumings
, J.
, and Zettl
, A.
, 2000
, “Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,” Science
, 289
(5479
), pp. 602
–604
.10.1126/science.289.5479.6027.
Zheng
, Q.
, and Jiang
, Q.
, 2002
, “Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,” Phys. Rev. Lett.
, 88
(4
), p. 045503
.8.
Guo
, W.
, Guo
, Y.
, Gao
, H.
, Zheng
, Q.
, and Zhong
, W.
, 2003
, “Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes
,” Phys. Rev. Lett.
, 91
(12
), p. 125501
.10.1103/PhysRevLett.91.1255019.
Zhao
, Y.
, Ma
, C.-C.
, Chen
, G.
, and Jiang
, Q.
, 2003
, “Energy Dissipation Mechanisms in Carbon Nanotube Oscillators
,” Phys. Rev. Lett.
, 91
(17
), p. 175504
.10.1103/PhysRevLett.91.17550410.
Rivera
, J. L.
, McCabe
, C.
, and Cummings
, P. T.
, 2003
, “Oscillatory Behavior of Double-Walled Nanotubes Under Extension: A Simple Nanoscale Damped Spring
,” Nano Lett.
, 3
(8
), pp. 1001
–1005
.10.1021/nl034171o11.
Servantie
, J.
, and Gaspard
, P.
, 2003
, “Methods of Calculation of a Friction Coefficient: Application to Nanotubes
,” Phys. Rev. Lett.
, 91
(18
), p. 185503
.10.1103/PhysRevLett.91.18550312.
Stuart
, S. J.
, Tutein
, A. B.
, and Harrison
, J. A.
, 2000
, “A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,” J. Chem. Phys.
, 112
(14
), pp. 6472
–6486
.10.1063/1.48120813.
Guo
, W.
, and Guo
, Y.
, 2007
, “Energy Optimum Chiralities of Multiwalled Carbon Nanotubes
,” J. Am. Chem. Soc.
, 129
(10
), pp. 2730
–2731
.10.1021/ja066206314.
Guo
, W.
, and Gao
, H.
, 2005
, “Optimized Bearing and Interlayer Friction in Multiwalled Carbon Nanotubes
,” Comput. Model. Eng. Sci.
, 7
(1
), pp. 19
–34
.10.3970/cmes.2005.007.01915.
Kirkwood
, J.
, 1946
, “The Statistical Mechanical Theory of Transport Processes
,” J. Chem. Phys.
, 14
(3
), pp. 180
–201
.10.1063/1.172411716.
Jarzynski
, C.
, 1993
, “Multiple-Time-Scale Approach to Ergodic Adiabatic Systems: Another Look
,” Phys. Rev. Lett.
, 71
(6
), pp. 839
–842
.10.1103/PhysRevLett.71.83917.
Berry
, M. V.
, and Robbins
, J. M.
, 1993
, “Classical Geometric Forces of Reaction: An Exactly Solvable Model
,” Proc. R. Soc. A
, 442
(1916
), pp. 641
–658
.10.1098/rspa.1993.012618.
Servantie
, J.
, and Gaspard
, P.
, 2006
, “Translational Dynamics and Friction in Double-Walled Carbon Nanotubes
,” Phys. Rev. B
, 73
(12
), p. 125428
.10.1103/PhysRevB.73.12542819.
Guo
, Y.
, Guo
, W.
, and Chen
, C.
, 2007
, “Modifying Atomic-Scale Friction Between Two Graphene Sheets: A Molecular-Force-Field Study
,” Phys. Rev. B
, 76
(15
), p. 155429
.10.1103/PhysRevB.76.15542920.
Yu
, M.
, Yakobson
, B. I.
, and Ruoff
, R. S.
, 2000
, “Controlled Sliding and Pullout of Nested Shells in Multiwalled Carbon Nanotubes
,” J. Phys. Chem. B
, 104
(37
), pp. 8764
–8767
.10.1021/jp002828d21.
Good
, R. J.
, Girifalco
, L. A.
, and Kraus
, G.
, 1958
, “A Theory For Estimation of Interfacial Energies. II. Application to Surface Thermodynamics of Teflon and Graphite
,” J. Phys. Chem.
, 62
(11
), pp. 1418
–1421
.10.1021/j150569a01622.
Benedict
, L. X.
, Chopra
, N. G.
, Cohen
, M. L.
, Zettl
, A.
, Louie
, A. G.
, and Crespi
, C. H.
, 1998
, “Microscopic Determination of the Interlayer Binding Energy in Graphite
,” Chem. Phys. Lett.
, 286
(5–6
), pp. 490
–496
.10.1016/S0009-2614(97)01466-8Copyright © 2013 by ASME
You do not currently have access to this content.