Oscillators composed of incommensurate graphene sheets have been investigated by molecular dynamics simulations. The oscillation frequencies can reach tens of gigahertz range and depend on the surface energy of the bilayer graphene and the oscillatory amplitude. We demonstrate the tunability of such an oscillator in terms of frequency and friction by its varying geometric parameters. Exploration of the damping mechanism by combining the autocorrelation function theory and the direct atomistic simulations reveals that the friction force is proportional to the velocity of oscillatory motion. The results should help optimize the design of graphene-based nanoelectromechanical devices.

References

References
1.
Zheng
,
Q.
,
Jiang
,
B.
,
Liu
,
S.
,
Weng
,
Y.
,
Lu
,
L.
,
Xue
,
Q.
,
Zhu
,
J.
,
Jiang
,
Q.
,
Wang
,
S.
, and
Peng
,
L.
,
2008
, “
Self-Retracting Motion of Graphite Microflakes
,”
Phys. Rev. Lett.
,
100
(
6
), p.
067205
.10.1103/PhysRevLett.100.067205
2.
Popov
,
A. M.
,
Lebedeva
,
I. V.
,
Knizhnik
,
A. A.
,
Lozovik
,
Y. E.
, and
Potapkin
,
B. V.
,
2011
, “
Molecular Dynamics Simulation of the Self-Retracting Motion of a Graphene Flake
,”
Phys. Rev. B
,
84
(
24
), p.
245437
.10.1103/PhysRevB.84.245437
3.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
4.
Kis
,
A.
, and
Zettl
,
A.
,
2008
, “
Nanomechanics of Carbon Nanotubes
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
366
(
1870
), pp.
1591
1611
.10.1098/rsta.2007.2174
5.
Lebedeva
,
I. V.
,
Knizhnik
,
A. A.
,
Popov
,
A. M.
,
Lozovik
,
Y. E.
, and
Potapkin
,
B. V.
,
2012
, “
Modeling of Graphene-Based NEMS
,”
Phys. E
,
44
(
6
), pp.
949
954
.10.1016/j.physe.2011.07.018
6.
Cumings
,
J.
, and
Zettl
,
A.
,
2000
, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
(
5479
), pp.
602
604
.10.1126/science.289.5479.602
7.
Zheng
,
Q.
, and
Jiang
,
Q.
,
2002
, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
88
(
4
), p.
045503
.
8.
Guo
,
W.
,
Guo
,
Y.
,
Gao
,
H.
,
Zheng
,
Q.
, and
Zhong
,
W.
,
2003
, “
Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
91
(
12
), p.
125501
.10.1103/PhysRevLett.91.125501
9.
Zhao
,
Y.
,
Ma
,
C.-C.
,
Chen
,
G.
, and
Jiang
,
Q.
,
2003
, “
Energy Dissipation Mechanisms in Carbon Nanotube Oscillators
,”
Phys. Rev. Lett.
,
91
(
17
), p.
175504
.10.1103/PhysRevLett.91.175504
10.
Rivera
,
J. L.
,
McCabe
,
C.
, and
Cummings
,
P. T.
,
2003
, “
Oscillatory Behavior of Double-Walled Nanotubes Under Extension: A Simple Nanoscale Damped Spring
,”
Nano Lett.
,
3
(
8
), pp.
1001
1005
.10.1021/nl034171o
11.
Servantie
,
J.
, and
Gaspard
,
P.
,
2003
, “
Methods of Calculation of a Friction Coefficient: Application to Nanotubes
,”
Phys. Rev. Lett.
,
91
(
18
), p.
185503
.10.1103/PhysRevLett.91.185503
12.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
13.
Guo
,
W.
, and
Guo
,
Y.
,
2007
, “
Energy Optimum Chiralities of Multiwalled Carbon Nanotubes
,”
J. Am. Chem. Soc.
,
129
(
10
), pp.
2730
2731
.10.1021/ja0662063
14.
Guo
,
W.
, and
Gao
,
H.
,
2005
, “
Optimized Bearing and Interlayer Friction in Multiwalled Carbon Nanotubes
,”
Comput. Model. Eng. Sci.
,
7
(
1
), pp.
19
34
.10.3970/cmes.2005.007.019
15.
Kirkwood
,
J.
,
1946
, “
The Statistical Mechanical Theory of Transport Processes
,”
J. Chem. Phys.
,
14
(
3
), pp.
180
201
.10.1063/1.1724117
16.
Jarzynski
,
C.
,
1993
, “
Multiple-Time-Scale Approach to Ergodic Adiabatic Systems: Another Look
,”
Phys. Rev. Lett.
,
71
(
6
), pp.
839
842
.10.1103/PhysRevLett.71.839
17.
Berry
,
M. V.
, and
Robbins
,
J. M.
,
1993
, “
Classical Geometric Forces of Reaction: An Exactly Solvable Model
,”
Proc. R. Soc. A
,
442
(
1916
), pp.
641
658
.10.1098/rspa.1993.0126
18.
Servantie
,
J.
, and
Gaspard
,
P.
,
2006
, “
Translational Dynamics and Friction in Double-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
73
(
12
), p.
125428
.10.1103/PhysRevB.73.125428
19.
Guo
,
Y.
,
Guo
,
W.
, and
Chen
,
C.
,
2007
, “
Modifying Atomic-Scale Friction Between Two Graphene Sheets: A Molecular-Force-Field Study
,”
Phys. Rev. B
,
76
(
15
), p.
155429
.10.1103/PhysRevB.76.155429
20.
Yu
,
M.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
,
2000
, “
Controlled Sliding and Pullout of Nested Shells in Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
,
104
(
37
), pp.
8764
8767
.10.1021/jp002828d
21.
Good
,
R. J.
,
Girifalco
,
L. A.
, and
Kraus
,
G.
,
1958
, “
A Theory For Estimation of Interfacial Energies. II. Application to Surface Thermodynamics of Teflon and Graphite
,”
J. Phys. Chem.
,
62
(
11
), pp.
1418
1421
.10.1021/j150569a016
22.
Benedict
,
L. X.
,
Chopra
,
N. G.
,
Cohen
,
M. L.
,
Zettl
,
A.
,
Louie
,
A. G.
, and
Crespi
,
C. H.
,
1998
, “
Microscopic Determination of the Interlayer Binding Energy in Graphite
,”
Chem. Phys. Lett.
,
286
(
5–6
), pp.
490
496
.10.1016/S0009-2614(97)01466-8
You do not currently have access to this content.