Pressurized graphene bubbles have been observed in experiments, which can be used to determine the mechanical and adhesive properties of graphene. A nonlinear plate theory is adapted to describe the deformation of a graphene monolayer subject to lateral loads, where the bending moduli of monolayer graphene are independent of the in-plane Young's modulus and Poisson's ratio. A numerical method is developed to solve the nonlinear equations for circular graphene bubbles, and the results are compared to approximate solutions by analytical methods. Molecular dynamics simulations of nanoscale graphene bubbles are performed, and it is found that the continuum plate theory is suitable only within the limit of linear elasticity. Moreover, the effect of van der Waals interactions between graphene and its underlying substrate is analyzed, including large-scale interaction for nanoscale graphene bubbles subject to relatively low pressures.

References

1.
Stolyarova
,
E.
,
Stolyarov
,
D.
,
Bolotin
,
K.
,
Ryu
,
S.
,
Liu
,
L.
,
Rim
,
K. T.
,
Klima
,
M.
,
Hybertsen
,
M.
,
Pogorelsky
,
I.
,
Pavlishin
,
I.
,
Kusche
,
K.
,
Hone
,
J.
,
Kim
,
P.
,
Stormer
,
H. L.
,
Yakimenko
,
V.
, and
Flynn
,
G.
,
2009
, “
Observation of Graphene Bubbles and Effective Mass Transport Under Graphene Films
,”
Nano Lett.
,
9
, pp.
332
337
.10.1021/nl803087x
2.
Georgiou
,
T.
,
Britnell
,
L.
,
Blake
,
P.
,
Gorbachev
,
R. V.
,
Gholinia
,
A.
,
Geim
,
A. K.
,
Casiraghi
,
C.
, and
Novoselov
,
K. S.
,
2011
, “
Graphene Bubbles With Controllable Curvature
,”
Appl. Phys. Lett.
,
99
,
p
. 093103.10.1063/1.3631632
3.
Levy
,
N.
,
Burke
,
S. A.
,
Meaker
,
K. L.
,
Panlasigui
,
M.
,
Zettl
,
A.
,
Guinea
,
F.
,
Castro Neto
,
A. H.
, and
Crommie
,
M. F.
,
2010
, “
Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles
,”
Science
,
329
, pp.
544
547
.10.1126/science.1191700
4.
Lu
,
J.
,
Castro Neto
,
A. H.
, and
Loh
,
K. P.
,
2012
, “
Transforming Moire Blisters Into Geometric Graphene Nano-Bubbles
,”
Nature Communications
,
3
,
p
. 823.10.1038/ncomms1818
5.
Zabel
,
J.
,
Nair
,
R. R.
,
Ott
,
A.
,
Georgiou
,
T.
,
Geim
,
A. K.
,
Novoselov
,
K. S.
, and
Casiraghi
,
C.
,
2012
, “
Raman Spectroscopy of Graphene and Bilayer Under Biaxial Strain: Bubbles and Balloons
,”
Nano Lett.
,
12
, pp.
617
621
.10.1021/nl203359n
6.
Bunch
,
J. S.
,
Verbridge
,
S. S.
,
Alden
,
J. S.
,
van der Zande
,
A. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
,
2008
, “
Impermeable Atomic Membranes From Graphene Sheets
,”
Nano Lett.
,
8
, pp.
2458
2462
.10.1021/nl801457b
7.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nature Nanotechnol.
,
6
, pp.
543
546
.10.1038/nnano.2011.123
8.
Yue
,
K.
,
Gao
,
W.
,
Huang
,
R.
, and
Liechti
,
K. M.
,
2012
, “
Analytical Methods for the Mechanics of Graphene Bubbles
,”
J. Appl. Phys.
,
112
,
p
. 083512.10.1063/1.4759146
9.
Hencky
,
H.
,
1915
, “On the Stress State in Circular Plates With Vanishing Bending Stiffness,”
Z. Math. Phys.
,
63
, pp.
311
317
.
10.
Lu
,
Q.
, and
Huang
,
R.
,
2009
, “
Nonlinear Mechanics of Single-Atomic-Layer Graphene Sheets
,”
Int. J. Appl. Mech.
,
1
, pp.
443
467
.10.1142/S1758825109000228
11.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
, pp.
385
388
.10.1126/science.1157996
12.
Wei
,
X.
,
Fragneaud
,
B.
,
Marianetti
,
C. A.
, and
Kysar
,
J. W.
,
2009
, “
Nonlinear Elastic Behavior of Graphene: Ab Initio Calculations to Continuum Description
,”
Phys. Rev. B
,
80
, p.
205407
.10.1103/PhysRevB.80.205407
13.
Lu
,
Q.
,
Gao
,
W.
, and
Huang
,
R.
,
2011
, “
Atomistic Simulation and Continuum Modeling of Graphene Nanoribbons Under Uniaxial Tension
,”
Modell. Simul. Mater. Sci. Eng.
,
19
, p.
054006
.10.1088/0965-0393/19/5/054006
14.
Helfrich
,
W.
,
1973
, “
Elastic Properties of Lipid Bilayers—Theory and Possible Experiments
,”
Z. Naturforsch. C
,
28
, pp.
693
703
.
15.
Timoshenko
,
S.
,
1940
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
, pp.
333
337
.
16.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
,
64
, p.
235406
.10.1103/PhysRevB.64.235406
17.
Arroyo
,
M.
, and
Belytschko
,
T.
,
2004
, “
Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule
,”
Phys. Rev. B
,
69
, p.
115415
.10.1103/PhysRevB.69.115415
18.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
, p.
245413
.10.1103/PhysRevB.74.245413
19.
Lu
,
Q.
,
Arroyo
,
M.
, and
Huang
,
R.
,
2009
, “
Elastic Bending Modulus of Monolayer Graphene
,”
J. Phys. D: Appl. Phys.
,
42
, p.
102002
.10.1088/0022-3727/42/10/102002
20.
Koskinen
,
P.
, and
Kit
,
O. O.
,
2010
, “
Approximate Modeling of Spherical Membranes
,”
Phys. Rev. B
,
82
, p.
235420
.10.1103/PhysRevB.82.235420
21.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471
.10.1103/PhysRevB.42.9458
22.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbon
,”
J. Phys. Condens. Matter
,
14
, pp.
783
802
.10.1088/0953-8984/14/4/312
23.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
112
, pp.
6472
6486
.10.1063/1.481208
24.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
25.
Blakslee
,
O. L.
,
Proctor
,
D. G.
,
Seldin
,
E. J.
,
Spence
,
G. B.
, and
Weng
,
T.
,
1970
, “
Elastic Constants of Compression-Annealed Pyrolytic Graphite
,”
J. Appl. Phys.
,
41
, pp.
3373
3382
.10.1063/1.1659428
26.
Aitken
,
Z. H.
, and
Huang
,
R.
,
2010
, “
Effects of Mismatch Strain and Substrate Surface Corrugation on Morphology of Supported Monolayer Graphene
,”
J. Appl. Phys.
,
107
, p.
123531
.10.1063/1.3437642
27.
Ishigami
,
M.
,
Chen
,
J. H.
,
Cullen
,
W. G.
,
Fuhrer
,
M. S.
, and
Williams
,
E. D.
,
2007
, “
Atomic Structure of Graphene on SiO2
,”
Nano Lett.
,
7
, pp.
1643
1648
.10.1021/nl070613a
28.
Gupta
,
A.
,
Chen
,
G.
,
Joshi
,
P.
,
Tadigadapa
,
S.
, and
Eklund
,
P. C.
,
2006
, “
Raman Scattering From High-Frequency Phonons in Supported n-Graphene Layer Films
,”
Nano Lett.
,
6
, pp.
2667
2673
.10.1021/nl061420a
29.
Sonde
,
S.
,
Giannazzo
,
F.
,
Raineri
, V
.
, and
Rimini
,
E.
,
2009
, “
Dielectric Thickness Dependence of Capacitive Behavior in Graphene Deposited on Silicon Dioxide
,”
J. Vac. Sci. Technol. B
,
27
, pp.
868
873
.10.1116/1.3081890
30.
Zong
,
Z.
,
Chen
,
C.-L.
,
Dokmeci
,
M. R.
, and
Wan
,
K.-T.
,
2010
, “
Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles
,”
J. Appl. Phys.
,
107
, p.
026104
.10.1063/1.3294960
31.
Martoňák
,
R.
,
Molteni
,
C.
, and
Parrinello
,
M.
,
2000
, “
Ab Initio Molecular Dynamics With a Classical Pressure Reservoir: Simulation of Pressure-Induced Amorphization in a Si35H36 Cluster
,”
Phys. Rev. Lett.
,
84
, pp.
682
685
.10.1103/PhysRevLett.84.682
32.
Hoover
,
W. G.
,
Ross
,
M.
,
Johnson
,
K. W.
,
Henderson
,
D.
,
Barker
,
J. A.
, and
Brown
,
B. C.
,
1970
, “
Soft-Sphere Equation of State
,”
J. Chem. Phys.
,
52
, pp.
4931
4941
.10.1063/1.1672728
33.
Clausius
,
R.
,
1870
, “
On a Mechanical Theory Applicable to Heat
,”
Philos. Mag.
,
40
, pp.
122
127
.
34.
Zhao
,
H.
, and
Aluru
,
N. R.
,
2010
, “
Temperature and Strain-Rate Dependent Fracture Strength of Graphene
,”
J. Appl. Phys.
,
108
, p.
064321
.10.1063/1.3488620
35.
Chen
,
S.
, and
Chrzan
,
D. C.
,
2011
, “
Monte Carlo Simulation of Temperature-Dependent Elastic Properties of Graphene
,”
Phys. Rev. B
,
84
, p.
195409
.10.1103/PhysRevB.84.195409
36.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2000
, “
Mechanics of Materials: Top-Down Approaches to Fracture
,”
Acta Mater.
,
48
, pp.
125
135
.10.1016/S1359-6454(99)00291-8
37.
Springman
,
R. M.
, and
Bassani
,
J. L.
,
2008
, “
Snap Transitions in Adhesion
,”
J. Mech. Phys. Solids
,
56
, pp.
2358
2380
.10.1016/j.jmps.2007.12.009
You do not currently have access to this content.