Molecular dynamics simulations are performed to investigate the effect of surface energy on equilibrium configurations and self-collapse of carbon nanotube bundles. It is shown that large and reversible volumetric deformation of such bundles can be achieved by tuning the surface energy of the system through an applied electric field. The dependence of the bundle volume on surface energy, bundle radius, and nanotube radius is discussed via a dimensional analysis and determined quantitatively using the simulation results. The study demonstrates potential of carbon nanotubes for applications in nanodevices where large, reversible, and controllable volumetric deformations are desired.

References

1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
, pp.
666
669
.10.1126/science.1102896
2.
Berger
,
C.
,
Song
,
Z.
,
Li
,
X.
,
Wu
,
X.
,
Brown
,
N.
,
Naud
,
C.
,
Mayou
,
D.
,
Li
,
T.
,
Hass
,
J.
,
Marchenkov
,
A. N.
,
Conrad
,
E. H.
,
First
,
P. N.
, and
de Heer
,
W. A.
,
2006
, “
Electronic Confinement and Coherence in Patterned Epitaxial Graphene
,”
Science
,
312
, pp.
1191
1196
.10.1126/science.1125925
3.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
, pp.
282
286
.10.1038/nature04969
4.
Dikin
,
D. A.
,
Stankovich
,
S.
,
Zimney
,
E. J.
,
Piner
,
R. D.
,
Dommett
,
G. H. B.
,
Evmenenko
,
G.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2007
, “
Preparation and Characterization of Graphene Oxide Paper
,”
Nature
,
448
, pp.
457
460
.10.1038/nature06016
5.
Zhang
,
M.
,
Atkinson
,
K. R.
, and
Baughman
,
R. H.
,
2004
, “
Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology
,”
Science
,
306
, pp.
1358
1361
.10.1126/science.1104276
6.
Zhu
,
H. W.
,
Xu
,
C. L.
,
Wu
,
D. H.
,
Wei
,
B. Q.
,
Vajtai
,
R.
, and
Ajayan
,
P. M.
,
2002
, “
Direct Synthesis of Long Nanotube Strands
,”
Science
,
296
, pp.
884
886
.10.1126/science.1066996
7.
Jiang
,
K.
,
Li
,
Q.
, and
Fan
,
S.
,
2002
, “
Nanotechnology: Spinning Continuous Carbon Nanotube Yarns
,”
Nature
,
419
, p.
801
.10.1038/419801a
8.
Dalton
,
A. B.
,
Collins
,
S.
,
Muñoz
,
E.
,
Razal
,
J. M.
,
Ebron
,
V. H.
,
Ferraris
,
J. P.
,
Coleman
,
J. N.
,
Kim
,
B. G.
, and
Baughman
R. H.
,
2003
, “
Super-Tough Carbon-Nanotube Fibres
,”
Nature
,
423
, p.
703
.10.1038/423703a
9.
Koziol
,
K.
,
Vilatela
,
J.
,
Moisala
,
A.
,
Motta
,
M.
,
Cunniff
,
P.
,
Sennett
,
M.
, and
Windle
,
A.
,
2007
, “
High-Performance Carbon Nanotube Fiber
,”
Science
,
318
, pp.
1892
1895
.10.1126/science.1147635
10.
Salvato
,
M.
,
Cirillo
,
M.
,
Lucci
,
M.
,
Orlanducci
,
S.
,
Ottaviani
,
I.
,
Terranova
,
M. L.
, and
Toschi
,
F.
,
2012
, “
Macroscopic Effects of Tunnelling Barriers in Aggregates of Carbon Nanotube Bundles
,”
J. Phys. D: Appl. Phys.
,
45
, p.
105306
.10.1088/0022-3727/45/10/105306
11.
Hisashi
,
A.
,
Tetsutaroh
,
K.
, and
Katsumi
,
Y.
,
2002
, “
Preparation of Straight Multiwalled Carbon Nanotube Bundles
,”
J. Phys. D: Appl. Phys.
,
35
, pp.
1076
1079
.10.1088/0022-3727/35/10/317
12.
Xiao
,
J.
,
Liu
,
B.
,
Huang
,
Y.
,
Zuo
,
J.
,
Hwang
,
K.-C.
, and
Yu
,
M.-F.
,
2007
, “
Collapse and Stability of Single and Multi-Wall Carbon Nanotubes
,”
Nanotechnology
,
18
, p.
395703
.10.1088/0957-4484/18/39/395703
13.
Elliott
,
J. A.
,
Sandler
,
J. K. W.
,
Windle
,
A. H.
,
Young
,
R. J.
, and
Shaffer
,
M. S. P.
,
2004
, “
Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent
,”
Phys. Rev. Lett.
,
92
, p.
095501
.10.1103/PhysRevLett.92.095501
14.
Pugno
,
N. M.
,
2010
, “
The Design of Self-Collapsed Super-Strong Nanotube Bundles
,”
J. Mech. Phys. Solids
,
58
, pp.
1397
1410
.10.1016/j.jmps.2010.05.007
15.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
A Translational Nanoactuator Based on Carbon Nanoscrolls on Substrates
,”
Appl. Phys. Lett.
,
96
, pp.
517
521
.10.1063/1.3302284
16.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
Tunable Water Channels With Carbon Nanoscrolls
,”
Small
,
6
, pp.
739
744
.10.1002/smll.200902286
17.
Langlet
,
R.
,
Devel
,
M.
, and
Lambin
,
Ph.
,
2006
, “
Computation of the Static Polarizabilities of Multi-Wall Carbon Nanotubes and Fullerites Using a Gaussian Regularized Point Dipole Interaction Model
,”
Carbon
,
44
, pp.
2883
2895
.10.1016/j.carbon.2006.05.050
18.
Wang
,
Z.
, and
Devel
,
M.
,
2007
, “
Electrostatic Deflections of Cantilevered Metallic Carbon Nanotubes Via Charge-Dipole Model
,”
Phys. Rev. B
,
76
, p.
195434
.10.1103/PhysRevB.76.195434
19.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
20.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
, pp.
6472
6486
.10.1063/1.481208
21.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
, pp.
783
802
.10.1088/0953-8984/14/4/312
22.
Zhang
,
Y. Y.
,
Wang
,
C. M.
,
Cheng
,
Y.
, and
Xiang
,
Y.
,
2011
, “
Mechanical Properties of Bilayer Graphene Sheets Coupled by sp+ Bonding
,”
Carbon
,
49
, pp.
4511
4517
.10.1016/j.carbon.2011.06.058
23.
Pei
,
Q. X.
,
Sha
,
Z. D.
, and
Zhang
,
Y. W.
,
2011
, “
A Theoretical Analysis of the Thermal Conductivity of Hydrogenated Graphene
,”
Carbon
,
49
, pp.
4752
4759
.10.1016/j.carbon.2011.06.083
You do not currently have access to this content.