Transverse shaft cracks are one of the most dangerous malfunctions of the rotating machines, including turbo- and hydrogenerators, high-speed machine tool spindles, etc. The undetected crack may grow slowly and not disturb normal machine operation. However, if it extends to a critical depth, the immediate shaft fracture may completely damage the machine, resulting in a catastrophic accident. Therefore, in-depth knowledge of the crack propagation process is essential to ensure reliable and safe operation of rotating machinery. The article introduces a new model of the propagating shaft crack. The approach is based on the rigid finite element (RFE) method, which has previously proven its effectiveness in the dynamical analysis of numerous complicated machines and structures. The crack is modeled using several dozen spring-damping elements (SDEs), connecting the faces of the cracked section of the shaft. By controlling the exact behavior of individual SDEs, not only the breathing mechanism, but also the crack propagation process can be simply introduced. In order to accomplish this, the stress intensity factors (SIFs) along the crack edge are calculated using the novel approach based on the modified virtual crack closure technique (VCCT). Based on the SIF values, the crack propagation rate is calculated from the Paris law. If the number of load cycles is greater than the constantly updated threshold number, then the crack edge is shifted by a small increment. This way, starting from the first initially cracked SDE, the crack is extended little by little, continuously changing its shape. The approach is illustrated with numerical results, demonstrating the changes in the rotor vibration response and in the crack shape and also explaining some issues about the breathing mechanism due to the propagating shaft crack. The increasing amplitude of the 2X harmonic component is recognized as an evident propagating crack signature. The numerical results correspond well with the data reported in the literature. The RFE model of the rotor is validated by comparing the vibration responses obtained experimentally and numerically. A good agreement between these data confirms the correctness and accuracy of the proposed model. The suggested approach may be utilized for a more reliable dynamic analysis of the rotating shafts, having the potential to experience propagating transverse cracks.

References

References
1.
Dimarogonas
,
A. D.
, and
Papadopoulos
,
C. A.
,
1983
, “
Vibration of Cracked Shafts in Bending
,”
J. Sound Vib.
,
91
, pp.
583
593
.10.1016/0022-460X(83)90834-9
2.
Sinou
,
J. J.
,
2009
, “
Experimental Response and Vibrational Characteristics of a Slotted Rotor
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
3179
3194
.10.1016/j.cnsns.2008.10.024
3.
Gasch
,
R. A.
,
1976
, “
Dynamic Behavior of a Simple Rotor With a Cross-Sectional Crack
,” Proceedings of IMechE Conference on Vibrations in Rotating Machinery, London, 20 Paper No. C178/76, pp.
123
128
.
4.
Grabowski
,
B.
,
1980
, “
The Vibrational Behavior of a Turbine Rotor Containing a Transverse Crack
,”
ASME J. Mech. Des.
,
102
, pp.
140
146
.10.1115/1.3254704
5.
Bently
,
D. E.
, and
Muszynska
A.
,
1986
, “
Detection of Rotor Cracks
,” Proceedings of 15th Turbomachinery Symposium, Corpus Christi, TX, November 10–13, pp.
129
139
.
6.
Mayes
,
I. W.
, and
Davies
,
W. G. R.
,
1984
, “
Analysis of the Response of a Multi-Rotor-Bearing System Containing a Transverse Crack in a Rotor
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
106
, pp.
139
145
.10.1115/1.3269142
7.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2004
, “
Coupled Bending, Longitudinal and Torsional Vibrations of a Cracked Rotor
,”
J. Sound Vib.
,
269
, pp.
33
60
.10.1016/S0022-460X(03)00003-8
8.
Darpe
,
A. K.
,
2007
, “
Coupled Vibrations of a Rotor With Slant Crack
,”
J. Sound Vib.
,
305
, pp.
172
193
.10.1016/j.jsv.2007.03.079
9.
Bachschmid
,
N.
,
Pennacchi
,
P.
, and
Tanzi
,
E.
,
2008
, “
Some Remarks on Breathing Mechanism, on Non-Linear Effects and on Slant and Helicoidal Cracks
,”
Mech. Syst. Signal Process.
,
22
, pp.
879
904
.10.1016/j.ymssp.2007.11.007
10.
Sawicki
,
J. T.
,
Storozhev
,
D. L.
, and
Lekki
,
J. D.
,
2011
, “
Exploration of NDE Properties of AMB Supported Rotors for Structural Damage Detection
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
102501
.10.1115/1.4002908
11.
Sawicki
,
J. T.
,
Wu
,
X.
,
Baaklini
,
G.
, and
Gyekenyesi
,
A. L.
,
2003
, “
Vibration-Based Crack Diagnosis in Rotating Shafts During Acceleration Through Resonance
,”
Proceedings of SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II
, San Diego, CA, February 26–March 2. 10.1117/12.484297
12.
Sawicki
,
J. T.
,
Friswell
,
M. I.
,
Pesch
,
A. H.
, and
Wroblewski
,
A.
,
2008
, “
Condition Monitoring of Rotor Using Active Magnetic Actuator
,” Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, June 9–13,
ASME
Paper No. GT2008-51169. 10.1115/GT2008-51169
13.
Sawicki
,
J. T.
,
Friswell
,
M. I.
,
Kulesza
,
Z.
,
Wroblewski
,
A.
, and
Lekki
,
J. D.
,
2011
, “
Detecting Cracked Rotors Using Auxiliary Harmonic Excitation
,”
J. Sound Vib.
,
330
, pp.
1365
1381
.10.1016/j.jsv.2010.10.006
14.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
, pp.
593
600
.10.1115/1.3438942
15.
Dimarogonas
,
A. D.
, and
Paipetis
,
S. A.
,
1983
,
Analytical Methods in Rotor Dynamics
,
Applied Science Publishers
,
London
.
16.
Sekhar
,
A. S.
, and
Balaji Prasad
,
P.
,
1997
, “
Dynamic Analysis of a Rotor System Considering a Slant Crack in the Shaft
,”
J. Sound Vib.
,
208
(
3
), pp.
457
474
.10.1006/jsvi.1997.1222
17.
Andrieux
,
S.
, and
Vare
,
C.
,
2002
, “
A 3D Cracked Beam Model With Unilateral Contact. Application to Rotors
,”
Eur. J. Mech. A/Solids
,
21
, pp.
793
810
.10.1016/S0997-7538(02)01225-1
18.
Vare
,
C.
, and
Andrieux
,
S.
,
2005
, “
Modeling of a Cracked Beam Section Under Bending
,” Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology, SMIRT 18, Beijing, China, August 7–12, pp.
281
290
.
19.
Andrier
,
B.
,
Garbay
,
E.
,
Hasnaoui
,
F.
,
Massin
,
P.
, and
Verrier
,
P.
,
2006
, “
Investigation of Helix-Shaped and Transverse Crack Propagation in Rotor Shafts Based on Disk Shrunk Technology
,”
Nucl. Eng. Des.
,
236
, pp.
333
349
.10.1016/j.nucengdes.2005.09.012
20.
Shih
,
Y. S.
, and
Chen
,
J. J.
,
1997
, “
Analysis of Fatigue Crack Growth on a Cracked Shaft
,”
Int. J. Fatigue
,
19
(
6
), pp.
477
485
.10.1016/S0142-1123(97)00003-0
21.
Shih
,
Y. S.
, and
Chen
,
J. J.
,
2002
, “
The Stress Intensity Factor Study of an Elliptical Cracked Shaft
,”
Nucl. Eng. Des.
,
214
, pp.
137
145
.10.1016/S0029-5493(02)00022-5
22.
Shin
,
C. S.
, and
Cai
,
C. Q.
,
2004
, “
Experimental and Finite Element Analyses on Stress Intensity Factors of an Elliptical Surface Crack in a Circular Shaft Under Tension and Bending
,”
Int. J. Fract.
,
129
, pp.
239
264
.10.1023/B:FRAC.0000047784.23236.7d
23.
Fonte
,
M.
,
Reis
,
L.
,
Romeiro
,
F.
,
Li
,
B.
, and
Freitas
,
M.
,
2006
, “
The Effect of Steady Torsion on Fatigue Crack Growth in Shafts
,”
Int. J. Fatigue
,
28
, pp.
609
617
.10.1016/j.ijfatigue.2005.06.051
24.
Lissenden
,
C. J.
,
Tissot
,
S. P.
,
Trethewey
,
M. W.
, and
Maynard
,
K. P.
,
2007
, “
Torsion Response of a Cracked Stainless Steel Shaft
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
8
), pp.
734
747
.10.1111/j.1460-2695.2007.01149.x
25.
Vaziri
,
A.
, and
Nayeb-Hashemi
,
H.
,
2006
, “
A Theoretical Investigation on the Vibrational Characteristics and Torsional Dynamic Response of Circumferentially Cracked Turbo-Generator Shafts
,”
Int. J. Solids Struct.
,
43
, pp.
4063
4081
.10.1016/j.ijsolstr.2005.05.029
26.
Adewusi
,
S. A.
, and
Al-Bedoor
,
B. O.
,
2002
, “
Detection of Propagating Cracks in Rotors Using Neural Networks
,” Proceedings of ASME 2002 Pressure Vessels and Piping Conference, Vancouver, BC, Canada, August 5–9,
ASME
Paper No. PVP2002-1518. 10.1115/PVP2002-1518
27.
Adewusi
,
S. A.
, and
Al-Bedoor
,
B. O.
,
2002
, “
Experimental Study on the Vibration of an Overhung Rotor With a Propagating Transverse Crack
,”
Shock Vib.
,
9
, pp.
91
104
.
28.
Mohamed
,
A. A.
,
Neilson
,
R.
,
MacConnell
,
P.
,
Renton
,
N. C.
, and
Deans
,
W.
,
2011
, “
Monitoring of Fatigue Crack Stages in a High Carbon Steel Rotating Shaft Using Vibration
,”
Procedia Eng.
,
10
, pp.
130
135
.10.1016/j.proeng.2011.04.024
29.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
131
150
.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
30.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
601
620
.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
31.
Geniaut
,
S.
,
Massin
,
P.
, and
Moës
,
N.
,
2007
, “
A Stable 3D Contact Formulation for Cracks Using X-FEM
,”
Rev. Eur. Mec. Numer.
,
16
, pp.
259
275
.10.3166/remn.16.259-275
32.
Jiang
,
D.
, and
Liu
,
C.
,
2011
, “
Crack Growth Prediction of the Steam Turbine Generator Shaft
,”
J. Phys.: Conf. Ser.
,
305
, p.
012023
.10.1088/1742-6596/305/1/012023
33.
Kruszewski
,
J.
,
Sawiak
,
S.
, and
Wittbrodt
,
E.
,
1999
,
Metoda Sztywnych Elementow Skonczonych w Dynamice Konstrukcji
,
WNT, Warszawa
,
Poland
.
34.
Wittbrodt
,
E.
,
Adamiec-Wojcik
,
I.
, and
Wojciech
,
S.
,
2006
,
Dynamics of Flexible Multibody Systems: Rigid Finite Element Method
,
Springer-Verlag
,
Berlin
.
35.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2012
, “
Rigid Finite Element Model of a Cracked Rotor
,”
J. Sound Vib.
,
331
(
18
), pp.
4145
4169
.10.1016/j.jsv.2012.04.014
36.
Rybicki
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
Finite-Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
.10.1016/0013-7944(77)90013-3
37.
Krueger
,
R.
,
2004
, “
Virtual Crack Closure Technique: History, Approach, and Applications
,”
Appl. Mech. Rev.
,
57
(
2
), pp.
109
144
.10.1115/1.1595677
38.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
, pp.
528
534
.10.1115/1.3656900
39.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2001
,
Metal Fatigue in Engineering
, 2nd ed.,
Wiley
,
New York
.
40.
Beden
,
S. M.
,
Abdullah
,
S.
, and
Ariffin
,
A. K.
,
2009
, “
Review of Fatigue Crack Propagation Models for Metallic Components
,”
Eur. J. Sci. Res.
,
28
(
3
), pp.
364
397
.
41.
Szata
,
M.
, and
Lesiuk
,
G.
,
2009
, “
Algorithms for the Estimation of Fatigue Crack Growth Using Energy Methods
,”
Arch. Civ. Mech. Eng.
,
IX
(
1
), pp.
119
134
.10.1016/S1644-9665(12)60045-4
42.
Wu
,
X.
,
Sawicki
,
J. T.
,
Friswell
,
M. I.
, and
Baaklini
,
G. Y.
,
2005
, “
Finite Element Analysis of Coupled Lateral and Torsional Vibrations of a Rotor With Multiple Cracks
,” Proceedings of ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno-Tahoe, NV, June 6–9,
ASME
Paper No. GT2005-68839. 10.1115/GT2005-68839
43.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks Handbook
,
Del Research Corporation
,
Hellertown, PA
.
44.
Bonnett
,
A. H.
,
2000
, “
Root Cause AC Motor Failure Analysis With a Focus on Shaft Failures
,”
IEEE Trans. Ind. Appl.
,
36
(
5
), pp.
1435
1448
.10.1109/28.871294
45.
Ishida
,
Y.
, and
Inoue
,
T.
,
2006
, “
Detection of Rotor Crack Using a Harmonic Excitation and Nonlinear Vibration Analysis
,”
ASME J. Vibr. Acoust.
,
128
, pp.
741
749
.10.1115/1.2346693
46.
Ludwig
,
R.
, and
Bretchko
,
P.
,
2000
,
RF Circuit Design: Theory and Applications
,
Prentice-Hall
,
Upper Saddle River, NJ
.
47.
Carr
,
J.
,
2002
,
RF Components and Circuits
,
Radio Society of Great Britain
,
Newnes, UK
.
48.
Hynynen
,
K.
,
2011
, “
Broadband Excitation in the System Identification of Active Magnetic Bearing Rotor Systems
,” D. Sc. thesis, Lappeenranta University of Technology, Lappeenranta, Finland.
49.
Saavedra
,
P. N.
, and
Cuitino
,
L. A.
,
2002
, “
Vibration Analysis of Rotor for Crack Identification
,”
J. Vib. Control
,
8
, pp.
51
67
.10.1177/1077546302008001526
You do not currently have access to this content.