Adhesive contact of a rigid sphere with a layered medium consisting of a stiff elastic layer perfectly bonded to an elastic-plastic substrate is examined in the context of finite element simulations. Surface adhesion is modeled by nonlinear spring elements obeying a force-displacement relation governed by the Lennard–Jones potential. Adhesive contact is interpreted in terms of the layer thickness, effective Tabor parameter (a function of the layer thickness and Tabor parameters corresponding to layer and substrate material properties), maximum surface separation, layer-to-substrate elastic modulus ratio, and plasticity parameter (a characteristic adhesive stress expressed as the ratio of the work of adhesion to the surface equilibrium distance, divided by the yield strength of the substrate). It is shown that surface separation (detachment) during unloading is not encountered at the instant of maximum adhesion (pull-off) force, but as the layered medium is stretched by the rigid sphere, when abrupt surface separation (jump-out) occurs under a smaller force (surface separation force). Ductile- and brittle-like modes of surface detachment, characterized by the formation of a neck between the rigid sphere and the layered medium and a residual impression on the unloaded layered medium, respectively, are interpreted for a wide range of plasticity parameter and maximum surface separation. Numerical results illustrate the effects of layer thickness, bulk and surface material properties, and maximum surface separation (interaction distance) on the pull-off and surface separation forces, jump-in and jump-out contact instabilities, and evolution of substrate plasticity during loading and unloading. Simulations of cyclic adhesive contact demonstrate that incremental plasticity (ratcheting) in the substrate is the most likely steady-state deformation mechanism under repetitive adhesive contact conditions.

References

References
1.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1987
, “
The Role of Hard Layers in Lubricated and Dry Sliding
,”
ASME J. Tribol.
,
109
, pp.
223
231
.10.1115/1.3261342
2.
O'Sullivan
,
T. C.
, and
King
,
R. B.
,
1988
, “
Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space
,”
ASME J. Tribol.
,
110
, pp.
235
240
.10.1115/1.3261591
3.
Komvopoulos
,
K.
,
1988
, “
Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface
,”
ASME J. Tribol.
,
110
, pp.
477
485
.10.1115/1.3261653
4.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1995a
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results
,”
ASME J. Appl. Mech.
,
62
, pp.
20
28
.10.1115/1.2895880
5.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1995b
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results
,”
ASME J. Appl. Mech.
,
62
, pp.
29
42
.10.1115/1.2895881
6.
Li
,
J.
, and
Chou
,
T.-W.
,
1997
, “
Elastic Field of a Thin-Film/Substrate System Under an Axisymmetric Loading
,”
Int. J. Solids Struct.
,
34
, pp.
4463
4478
.10.1016/S0020-7683(97)00053-X
7.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
, pp.
301
313
.10.1098/rspa.1971.0141
8.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
, pp.
314
326
.10.1016/0021-9797(75)90018-1
9.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
, pp.
2
13
.10.1016/0021-9797(77)90366-6
10.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
, pp.
243
269
.10.1016/0021-9797(92)90285-T
11.
Carpick
,
R. W.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
,
1999
, “
A General Equation for Fitting Contact Area and Friction vs Load Measurements
,”
J. Colloid Interface Sci.
,
211
, pp.
395
400
.10.1006/jcis.1998.6027
12.
Wu
,
J.-J.
,
2008
, “
Easy-to-Implement Equations for Determining Adhesive Contact Parameters With the Accuracy of Numerical Simulations
,”
Tribol. Lett.
,
30
, pp.
99
105
.10.1007/s11249-008-9315-4
13.
Israelachvili
,
J. N.
,
1992
,
Intermolecular and Surface Forces
,
2nd ed.
,
Academic
,
San Diego, CA
.
14.
Muller
,
V. M.
,
Yushchenko
,
V. S.
, and
Derjaguin
,
B. V.
,
1980
, “
On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane
,”
J. Colloid Interface Sci.
,
77
, pp.
91
101
.10.1016/0021-9797(80)90419-1
15.
Greenwood
,
J. A.
,
1997
, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
1277
1297
.10.1098/rspa.1997.0070
16.
Feng
,
J. Q.
,
2001
, “
Adhesive Contact of Elastically Deformable Spheres: A Computational Study of Pull-Off Force and Contact Radius
,”
J. Colloid Interface Sci.
,
238
, pp.
318
323
.10.1006/jcis.2001.7532
17.
Du
,
Y.
,
Chen
,
L.
,
McGruer
,
N. E.
,
Adams
,
G. G.
, and
Etsion
,
I.
,
2007
, “
A Finite Element Model of Loading and Unloading of an Asperity Contact With Adhesion and Plasticity
,”
J. Colloid Interface Sci.
,
312
, pp.
522
528
.10.1016/j.jcis.2007.03.040
18.
Song
,
Z.
, and
Komvopoulos
,
K.
,
2011
, “
Adhesion-Induced Instabilities in Elastic and Elastic-Plastic Contacts During Single and Repetitive Normal Loading
,”
J. Mech. Phys. Solids
,
59
, pp.
884
897
.10.1016/j.jmps.2010.12.007
19.
Maugis
,
D.
, and
Pollock
,
H. M.
,
1984
, “
Surface Forces, Deformation and Adherence at Metal Microcontacts
,”
Acta Metall.
,
32
, pp.
1323
1334
.10.1016/0001-6160(84)90078-6
20.
Wang
,
X.-D.
,
Shen
,
Z.-X.
,
Zhang
,
J.-L.
,
Jiao
,
H.-F.
,
Cheng
,
X.-B.
,
Chen
,
L.-Y.
, and
Wang
,
Z.-S.
,
2010
, “
Submicrometer Aluminum Spheres' Adhesion to Planar Silicon Substrates
,”
Langmuir
,
26
, pp.
13903
13906
.10.1021/la101538v
21.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2008
,
“Loading-Unloading of an Elastic-Plastic Adhesive Spherical Microcontact
,”
J. Colloid Interface Sci.
,
321
, pp.
242
250
.10.1016/j.jcis.2007.12.046
22.
Sridhar
,
I.
,
Johnson
,
K. L.
, and
Fleck
,
N. A.
,
1997
, “
Adhesion Mechanics of the Surface Force Apparatus
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
1710
1719
.10.1088/0022-3727/30/12/004
23.
Johnson
,
K. L.
, and
Sridhar
,
I.
,
2001
, “
Adhesion Between a Spherical Indenter and an Elastic Solid With a Compliant Elastic Coating
,”
J. Phys. D: Appl. Phys.
,
34
, pp.
683
689
.10.1088/0022-3727/34/5/304
24.
Sridhar
,
I.
, and
Sivashanker
,
S.
,
2003
, “
On the Adhesion Mechanics of Multi-Layer Elastic Systems
,”
Surf. Coat. Technol.
,
167
, pp.
181
187
.10.1016/S0257-8972(02)00893-9
25.
Sergici
,
A. O.
,
Adams
,
G. G.
, and
Müftü
,
S.
,
2006
, “
Adhesion in the Contact of a Spherical Indenter With a Layered Elastic Half-Space
,”
J. Mech. Phys. Solids
,
54
, pp.
1843
1861
.10.1016/j.jmps.2006.03.005
26.
Perriot
,
A.
, and
Barthel
,
E.
,
2004
, “
Elastic Contact to a Coated Half-Space: Effective Elastic Modulus and Real Penetration
,”
J. Mater. Res.
,
19
, pp.
600
608
.10.1557/jmr.2004.19.2.600
27.
Barthel
,
E.
, and
Perriot
,
A.
,
2007
, “
Adhesive Contact of a Coated Elastic Substrate
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
1059
1067
.10.1088/0022-3727/40/4/021
28.
Eid
,
H.
,
Joshi
,
N.
,
McGruer
,
N. E.
, and
Adams
,
G. G.
,
2011
, “
A Model of Contact With Adhesion of a Layered Elastic-Plastic Microsphere With a Rigid Flat Surface
,”
ASME J. Tribol.
,
133
, p.
031406
.10.1115/1.4004343
29.
King
,
R. B.
,
1987
, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
,
23
, pp.
1657
1664
.10.1016/0020-7683(87)90116-8
30.
Du
,
Y.
,
Adams
,
G. G.
,
McGruer
,
N. E.
, and
Etsion
,
I.
,
2008
, “
A Parameter Study of Separation Modes of Adhering Microcontacts
,”
J. Appl. Phys.
,
103
, p.
064902
.10.1063/1.2874434
You do not currently have access to this content.