The classical continuum theory cannot be directly used to describe the behavior of nanostructures because of their size-dependent attribute. Surface stress effect is one of the most important size dependencies of structures at this submicron size, which is due to the high surface to volume ratio of nanoscale domain. In the present study, the nonclassical governing differential equation together with corresponding boundary conditions are derived using Hamilton's principle, into which the surface energies are incorporated through the Gurtin-Murdoch elasticity theory. The model developed herein contains intrinsic length scales to take the size effect into account and is used to analyze the free vibration response of circular nanoplates including surface stress effect. The generalized differential quadrature (GDQ) method is employed to discretize the governing size-dependent differential equation along with simply supported and clamped boundary conditions. The classical and nonclassical frequencies of circular nanoplates with various edge supports and thicknesses are calculated and are compared to each other. It is found that the influence of surface stress can be different for various circumferential mode numbers, boundary conditions, plate thicknesses, and surface elastic constants.

References

References
1.
Streitz
,
F. H.
,
Cammarata
,
R. C.
, and
Sieradzki
,
K.
,
1994
, “
Surface Stress Effects on Elastic Properties. I. Thin Metal Films
,”
Phys. Rev. B
,
49
(
15
), pp.
10699
10706
.10.1103/PhysRevB.49.10699
2.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effects on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1954
.10.1016/j.jmps.2005.02.012
3.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2003
, “
Vibration of an Embedded Multiwall Carbon Nanotube
,”
Composites Sci. Technol.
,
63
(
11
), pp.
1533
1542
.10.1016/S0266-3538(03)00058-7
4.
Fu
,
Y. M.
,
Hong
,
J. W.
, and
Wang
,
X. Q.
,
2006
, “
Analysis of Nonlinear Vibration for Embedded Carbon Nanotubes
,”
J. Sound Vib.
,
296
(
4–5
), pp.
746
756
.10.1016/j.jsv.2006.02.024
5.
Wang
,
Q.
, and
Varadan
,
V. K.
,
2006
, “
Wave Characteristics of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
43
(
2
), pp.
254
265
.10.1016/j.ijsolstr.2005.02.047
6.
Liew
,
K. M.
, and
Wang
,
Q.
,
2007
, “
Analysis of Wave Propagation in Carbon Nanotubes Via Elastic Shell Theories
,”
Int. J. Eng. Sci.
,
45
(
2–8
), pp.
227
241
.10.1016/j.ijengsci.2007.04.001
7.
Wang
,
L.
,
Ni
,
Q.
,
Li
,
M.
, and
Qian
,
Q.
,
2008
, “
The Thermal Effect on Vibration and Instability of Carbon Nanotubes Conveying Fluid
,”
Physica E
,
40
(
10
), pp.
3179
3182
.10.1016/j.physe.2008.05.009
8.
Elishakoff
,
I.
, and
Pentaras
,
D.
,
2009
, “
Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
322
(
4–5
), pp.
652
664
.10.1016/j.jsv.2009.02.037
9.
Ansari
,
R.
,
Hemmatnezhad
,
M.
, and
Rezapour
,
J.
,
2011
, “
The Thermal Effect on Nonlinear Oscillations of Carbon Nanotubes With Arbitrary Boundary Conditions
,”
Curr. Appl. Phys.
11
(
3
), pp.
692
697
.10.1016/j.cap.2010.11.034
10.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surface
,”
Arch. Rat. Mech. Anal.
,
57
(
4
), pp.
291
323
.10.1007/BF00261375
11.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.10.1016/0020-7683(78)90008-2
12.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
.10.1016/j.jmps.2008.01.001
13.
Luo
,
J.
, and
Wang
,
X.
,
2009
, “
On the Anti-Plane Shear of an Elliptic Nano Inhomogeneity
,”
Eur. J. Mech. A
,
28
(
5
), pp.
926
934
.10.1016/j.euromechsol.2009.04.001
14.
Gordeliy
,
E.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2009
, “
Transient Thermal Stresses in a Medium With a Circular Cavity With Surface Effects
,”
Int. J. Solids Struct.
,
46
(
9
), pp.
1834
1848
.10.1016/j.ijsolstr.2008.12.014
15.
Zhao
,
X. J.
, and
Rajapakse
,
R. K. N. D.
,
2009
, “
Analytical Solutions for a Surface Loaded Isotropic Elastic Layer With Surface Energy Effects
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1433
1444
.10.1016/j.ijengsci.2008.12.013
16.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Grotta
,
A. L.
, and
Stolarski
,
H. K.
,
2010
, “
The Effects of Surface Elasticity and Surface Tension on the Transverse Overall Elastic Behavior of Unidirectional Nano-Composites
,”
Composites Sci. Technol.
,
70
(
3
), pp.
427
434
.10.1016/j.compscitech.2009.11.012
17.
Song
,
F.
, and
Huang
,
G. L.
,
2009
, “
Modeling of Surface Stress Effects on Bending Behavior of Nanowires: Incremental Deformation Theory
,”
Phys. Lett. A
,
373
(
43
), pp.
3969
3973
.10.1016/j.physleta.2009.08.065
18.
On
,
B. B.
,
Altus
,
E.
, and
Tadmor
,
E. B.
,
2010
, “
Surface Effects in Non-Uniform Nanobeams: Continuum vs. Atomistic Modeling
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1243
1252
.10.1016/j.ijsolstr.2010.01.010
19.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
, p.
013510
.10.1063/1.2405127
20.
Ansari
,
R.
, and
Sahmani
,
S.
,
2011
, “
Surface Stress Effects on the Free Vibration Behavior of Nanoplates
,”
Int. J. Eng. Sci.
,
49
, pp.
1204
1215
.10.1016/j.ijengsci.2011.06.005
21.
Ansari
,
R.
, and
Sahmani
,
S.
,
2011
, “
Bending Behavior and Buckling of Nanobeams Including Surface Stress Effects Corresponding to Different Beam Theories
,”
Int. J. Eng. Sci.
,
49
, pp.
1244
1255
.10.1016/j.ijengsci.2011.01.007
22.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
, pp.
139
147
.10.1088/0957-4484/11/3/301
23.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
, p.
231904
.10.1063/1.2746950
24.
Shenoy
,
V. B.
,
2005
, “
Atomistic Calculations of Elastic Properties of Metallic fcc Crystal Surfaces
,”
Phys. Rev. B
,
71
(
9
), pp.
1
11
.10.1103/PhysRevB.71.094104
25.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Magn. A
,
78
(
5
), pp.
1093
1109
.10.1080/01418619808239977
26.
Weissmuller
,
J.
, and
Cahn
,
J. W.
,
1997
, “
Mean Stresses in Microstructures Due to Interface Stresses: A Generalization of a Capillary Equation for Solids
,”
Acta Mater.
,
45
(
5
), pp.
1899
1906
.10.1016/S1359-6454(96)00314-X
27.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
.10.1063/1.1539929
28.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
29.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
.10.1115/1.1781177
30.
Lu
,
L.
,
He
,
L. H.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
, “
Thin Plate Theory Including Surface Effects
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4631
4647
.10.1016/j.ijsolstr.2005.07.036
31.
Gurtin
,
M. E.
, and
Murdoch
,
A.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Rat. Mech. Anal.
,
57
,
291
323
.10.1007/BF00261375
32.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer
,
London.
You do not currently have access to this content.