The Girsanov linearization method (GLM), proposed earlier in Saha, N., and Roy, D., 2007, “The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators,” J. Appl. Mech.,74, pp. 885–897, is reformulated to arrive at a nearly exact, semianalytical, weak and explicit scheme for nonlinear mechanical oscillators under additive stochastic excitations. At the heart of the reformulated linearization is a temporally localized rejection sampling strategy that, combined with a resampling scheme, enables selecting from and appropriately modifying an ensemble of locally linearized trajectories while weakly applying the Girsanov correction (the Radon–Nikodym derivative) for the linearization errors. The semianalyticity is due to an explicit linearization of the nonlinear drift terms and it plays a crucial role in keeping the Radon–Nikodym derivative “nearly bounded” above by the inverse of the linearization time step (which means that only a subset of linearized trajectories with low, yet finite, probability exceeds this bound). Drift linearization is conveniently accomplished via the first few (lower order) terms in the associated stochastic (Ito) Taylor expansion to exclude (multiple) stochastic integrals from the numerical treatment. Similarly, the Radon–Nikodym derivative, which is a strictly positive, exponential (super-) martingale, is converted to a canonical form and evaluated over each time step without directly computing the stochastic integrals appearing in its argument. Through their numeric implementations for a few low-dimensional nonlinear oscillators, the proposed variants of the scheme, presently referred to as the Girsanov corrected linearization method (GCLM), are shown to exhibit remarkably higher numerical accuracy over a much larger range of the time step size than is possible with the local drift-linearization schemes on their own.

References

References
1.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory
,”
ASME Appl. Mech. Rev.
,
58
(
3
), pp.
178
205
.10.1115/1.1896368
2.
Kallianpur
,
G.
,
1980
,
Stochastic Filtering Theory
,
Springer-Verlag
,
New York
.
3.
Kloeden
,
P. E.
, and
Platen
,
E.
,
1999
,
Numerical Solution of Stochastic Differential Equations
,
Springer
,
New York
.
4.
Maruyama
,
G.
,
1955
, “
Continuous Markov Processes and Stochastic Equations
,”
Rend. Circ. Mat. Palermo
,
4
, pp.
48
90
.10.1007/BF02846028
5.
Gard
,
T. C.
,
1988
,
Introduction to Stochastic Differential Equations
,
Marcel Dekker Inc.
,
New York
.
6.
Burrage
,
K.
,
Burrage
P. M.
, and
Tian
,
T.
,
2004
, “
Numerical Methods for Strong Solutions of Stochastic Differential Equations: An Overview
,”
Proc. R. Soc. London, Ser. A
,
460
(
2041
), pp.
373
402
.10.1098/rspa.2003.1247
7.
Rumelin
,
W.
,
1982
, “
Numerical Treatment of Stochastic Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
19
(
3
), pp.
604
613
.10.1137/0719041
8.
Roy
,
D.
, and
Dash
,
M. K.
,
2005
, “
Explorations of a Family of Stochastic Newmark Methods in Engineering Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
45–47
), pp.
4758
4796
.10.1016/j.cma.2004.11.010
9.
Roy
,
D.
,
2006
, “
A Family of Weak Stochastic Newmark Methods for Simplified and Efficient Monte Carlo Simulations of Oscillators
,”
Int. J. Numer. Methods Eng.
,
67
(
3
), pp.
364
399
.10.1002/nme.1634
10.
Roy
,
D.
,
2001
, “
A Numeric-Analytic Technique For Non-Linear Deterministic and Stochastic Dynamical Systems
,”
Proc. R. Soc. A
,
457
, pp.
539
566
.10.1098/rspa.2000.0681
11.
Bernard
,
P.
, and
Wu
,
L.
,
1998
, “
Stochastic Linearization: The Theory
,”
J. Appl. Probab.
,
35
(
3
), pp.
718
730
.10.1239/jap/1032265219
12.
Elishakoff
,
I.
, and
Falsone
,
G.
,
1993
, “
Some Recent Developments in Stochastic Linearization Technique
,”
Computational Stochastic Mechanics
,
A.
Cheng
and
C. Y.
Yang
, eds.,
Elsevier Applied Science
,
London
, pp.
175
194
.
13.
Bouc
,
R.
,
1994
, “
The Power Spectral Density of Response for a Strongly Nonlinear Random Oscillator
,”
J. Sound Vib.
,
175
(
3
), pp.
317
331
.10.1006/jsvi.1994.1331
14.
Socha
,
L.
,
1995
, “
Application of Probability Metrics to the Linearization and Sensitivity Analysis of Stochastic Dynamic Systems
,”
Proceedings of the International Conference on Nonlinear Stochastic Dynamics
,
Hanoi, Vietnam
, December, pp.
193
202
.
15.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part II: Applications
,”
ASME Appl. Mech. Rev.
,
58
(
5
), pp.
303
314
.10.1115/1.1995715
16.
Jimenez
,
J. C.
,
2002
, “
A Simple Algebraic Expression to Evaluate the Local Linearization Schemes for Stochastic Differential Equations
,”
Appl. Math. Lett.
,
15
, pp.
775
780
.10.1016/S0893-9659(02)00041-1
17.
Saha
,
N.
, and
Roy
,
D.
,
2007
, “
The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators
,”
ASME J. Appl. Mech.
,
74
, pp.
885
897
.10.1115/1.2712234
18.
Rubinstein
,
R. Y.
,
1981
,
Simulation and the Monte Carlo Method
,
Wiley
,
New York
.
19.
Oksendal
,
B. K.
,
2003
,
Stochastic Differential Equations—An Introduction With Applications
,
6th ed.
,
Springer
,
New York
.
20.
Roy
,
D.
,
2000
, “
Exploration of the Phase-Space Linearization Method for Deterministic and Stochastic Nonlinear Dynamical Systems
,”
Nonlinear Dyn.
,
23
(
3
), pp.
225
258
.10.1023/A:1008304408643
21.
Robert
,
C. P.
, and
Casella
,
G.
,
2004
,
Monte Carlo Statistical Methods
,
Springer
,
New York
.
22.
Handschin
,
J. E.
, and
Mayne
,
D. Q.
,
1969
, “
Monte Carlo Techniques to Estimate the Conditional Expectation in Multi-State, Nonlinear Filtering
,”
Int. J. Control
,
9
, pp.
547
559
.10.1080/00207176908905777
23.
Beskos
,
A.
, and
Roberts
,
G. O.
,
2005
, “
Exact Simulation of Diffusions
,”
Ann. Appl. Probab.
,
15
(
4
), pp.
2422
2444
.10.1214/105051605000000485
24.
Wang
,
R.
, and
Zhang
,
Z.
,
2000
, “
Exact Stationary Solutions of the Fokker-Planck Equation for Nonlinear Oscillators under Stochastic Parametric and External Excitations
,”
Nonlinearity
,
13
(
3
), pp.
907
920
.10.1088/0951-7715/13/3/322
You do not currently have access to this content.