The three-dimensional (3D) free vibration of twisted cylinders with sectorial cross section or a radial crack through the height of the cylinder is studied by means of the Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. A simple coordinate transformation is applied to map the twisted cylindrical domain into a normal cylindrical domain. The product of a triplicate Chebyshev polynomial series along with properly defined boundary functions is selected as the admissible functions. An eigenvalue matrix equation can be conveniently derived through a minimization process by the Rayleigh–Ritz method. The boundary functions are devised in such a way that the geometric boundary conditions of the cylinder are automatically satisfied. The excellent property of Chebyshev polynomial series ensures robustness and rapid convergence of the numerical computations. The present study provides a full vibration spectrum for thick twisted cylinders with sectorial cross section, which could not be determined by 1D or 2D models. Highly accurate results presented for the first time are systematically produced, which can serve as a benchmark to calibrate other numerical solutions for twisted cylinders with sectorial cross section. The effects of height-to-radius ratio and twist angle on frequency parameters of cylinders with different subtended angles in the sectorial cross section are discussed in detail.

References

References
1.
Timoshenko
,
S. P.
,
1955
,
Vibration Problems in Engineering
,
3rd ed.
,
D. Van Nostrand Company
, New York.
2.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Lo
,
S. H.
, and
Au
,
F. T. K.
,
2003
, “
Three-Dimensional Vibration Analysis of Solid and Hollow Circular Cylinders via Chebyshev–Ritz Method
,”
Comput. Meth. Appl. Mech. Eng.
,
192
, pp.
1575
1589
.10.1016/S0045-7825(02)00643-6
3.
Leissa
,
A. W.
, and
So
,
J.
,
1995
, “
Accurate Vibration Frequencies of Circular Cylinders From Three-Dimensional Analysis
,”
J. Acoust. Soc. Am.
,
98
, pp.
2136
2141
.10.1121/1.414403
4.
Hutchinson
,
J. R.
,
1980
, “
Vibrations of Solid Cylinders
,”
ASME J. Appl. Mech.
,
47
, pp.
901
907
.10.1115/1.3153811
5.
Liew
,
K. M.
, and
Hung
,
K. C.
,
1995
, “
Three-Dimensional Vibratory Characteristics of Solid Cylinders and Some Remarks of Simplified Beam Theories
,”
Int. J. Solid. Struct.
,
32
, pp.
3499
3513
.10.1016/0020-7683(95)00004-T
6.
Cheung
,
Y. K.
, and
Wu
,
C. I.
,
1972
, “
Free Vibrations of Thick, Layered Cylinders Having Finite Length With Various Boundary Conditions
,”
J. Sound Vib.
,
24
, pp.
189
200
.10.1016/0022-460X(72)90948-0
7.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1998
, “
Vibration of Thick Prismatic Structures With Three-Dimensional Flexibility
,”
ASME J. Appl. Mech.
,
65
, pp.
619
625
.10.1115/1.2789103
8.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Lo
,
S. H.
, and
Au
,
F. T. K.
,
2010
, “
Three-Dimensional Vibration Analysis of Prisms With Isosceles Triangular Cross-Section
,”
Arch. Appl. Mech.
,
80
, pp.
699
710
.10.1007/s00419-009-0337-7
9.
Lim
,
C. W.
,
1999
, “
Three-Dimensional Vibration Analysis of a Cantilevered Parallelepiped: Exact and Approximate Solutions
,”
J. Acoust. Soc. Am.
,
106
, pp.
3375
3381
.10.1121/1.428191
10.
Leissa
,
A. W.
, and
Zhang
,
Z. D.
,
1983
, “
On the Three-Dimensional Vibrations of the Cantilevered Rectangular Parallelepiped
,”
J. Acoust. Soc. Am.
,
73
, pp.
2013
2021
.10.1121/1.389568
11.
Kotousov
,
A.
, and
Lew
,
Y. T.
,
2006
, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates of Arbitrary Thickness in Extension
,”
Int. J. Solid. Struct.
,
43
, pp.
5100
5109
.10.1016/j.ijsolstr.2005.06.037
12.
Wu
,
Z.
, and
Liu
,
Y.
,
2008
, “
Analytical Solution for the Singular Stress Distribution Due to V-Notch in an Orthotropic Plate Material
,”
Eng. Frac. Mech.
,
75
, pp.
2367
2384
.10.1016/j.engfracmech.2007.09.001
13.
Folias
,
E. S.
,
1975
, “
On the Three-Dimensional Theory of Cracked Plates
,”
ASME J. Appl. Mech.
,
42
, pp.
663
674
.10.1115/1.3423660
14.
Shen
,
I. Y.
,
1995
, “
Vibration of a Three-Dimensional, Finite Linear, Elastic Solid Containing Cracks
,”
ASME J. Appl. Mech.
,
62
, pp.
282
288
.10.1115/1.2895929
15.
Kotousov
,
A.
,
2010
, “
Effect of Plate Thickness on Stress State at Sharp Notches and the Strength Paradox of Thick Plates
,”
Int. J. Solid. Struct.
,
47
, pp.
1916
1923
.10.1016/j.ijsolstr.2010.03.029
16.
Leissa
,
A. W.
,
McGee
,
O. G.
, and
Huang
,
C. S.
,
1993
, “
Vibrations of Sectorial Plates Having Corners Tress Singularities
,”
ASME J. Appl. Mech.
,
60
, pp.
134
140
.10.1115/1.2900735
17.
McGee
,
O. G.
,
Leissa
,
A. W.
,
Huang
,
C. S.
, and
Kim
,
J. W.
,
1995
, “
Vibrations of Circular Plates With Clamped V-Notches or Rigidly Constrained Radial Cracks
,”
J. Sound Vib.
,
181
, pp.
185
201
.10.1006/jsvi.1995.0134
18.
McGee
,
O. G.
,
Kim
,
J. W.
, and
Leissa
,
A. W.
,
2005
, “
Sharp Corners in Mindlin Plate Vibrations
,”
ASME J. Appl. Mech.
,
72
, pp.
1
9
.10.1115/1.1795221
19.
Leissa
,
A. W.
,
McGee
,
O. G.
, and
Huang
,
C. S.
,
1993
, “
Vibrations of Sectorial Plates Having Corner Stress Singularities
,”
ASME J. Appl. Mech.
,
60
, pp.
134
140
.10.1115/1.2900735
20.
Huang
,
C. S.
, and
Leissa
,
A. W.
,
2009
, “
Vibration Analysis of Rectangular Plates With Side Cracks via the Ritz Method
,”
J. Sound Vib.
,
323
, pp.
974
988
.10.1016/j.jsv.2009.01.018
21.
Zhou
,
D.
,
Lo
,
S. H.
, and
Cheung
,
Y. K.
,
2009
, “
3-D Vibration Analysis of Annular Sector Plates Using the Chebyshev–Ritz Method
,”
J. Sound Vib.
,
320
, pp.
421
437
.10.1016/j.jsv.2008.08.001
22.
Kielb
,
R. E.
,
Leissa
,
A.W.
, and
Macbain
,
J. C.
,
1985
, “
Vibrations of Twisted Cantilever Plates—A Comparison of Theoretical Results
,”
Int. J. Numer. Meth. Eng.
,
21
, pp.
1365
1380
.10.1002/nme.1620210802
23.
Lim
,
C. W.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
,
1997
, “
Free Vibration of Pretwisted, Cantilevered Composite Shallow Conical Shells
,”
AIAA J.
,
35
, pp.
327
333
.10.2514/2.96
24.
Hu
,
X. X.
,
Lim
,
C. W.
,
Sakiyama
,
T.
,
Li
,
Z. R.
, and
Wang
,
W. K.
,
2005
, “
Free Vibration of Elastic Helicoidal Shells
,”
Int. J. Mech. Sci.
,
47
, pp.
941
960
.10.1016/j.ijmecsci.2005.01.001
25.
Sinha
,
S. K.
, and
Turner
,
K. E.
,
2011
, “
Natural Frequencies of a Pre-Twisted Blade in a Centrifugal Force Field
,”
J. Sound Vib.
,
330
, pp.
2655
2681
.10.1016/j.jsv.2010.12.017
26.
Leissa
,
A.
, and
Jacob
,
K. I.
,
1986
, “
3-Dimensional Vibrations of Twisted Cantilevered Parallelepipeds
,”
ASME J. Appl. Mech.
,
53
, pp.
614
618
.10.1115/1.3171820
27.
McGee
,
O. G.
,
1992
, “
Performance of Continuum and Discrete 3-Dimensional Vibration Analyses of Twisted Cantilevered Parallelepipeds
,”
Comput. Struct.
,
42
, pp.
211
227
.10.1016/0045-7949(92)90205-E
28.
McGee
,
O. G.
,
1992
, “
On the 3-Dimensional Vibration Analysis of Simultaneously Skewed and Twisted Cantilevered Parallelepipeds
,”
Int. J. Numer. Meth. Eng.
,
33
, pp.
1383
1411
.10.1002/nme.1620330704
29.
McGee
,
O. G.
,
1993
, “
The 3-Dimensional Vibration Analysis of a Cantilevered Skewed Helicoidal Thick Shell
,”
J. Acoust. Soc. Am.
,
93
, pp.
1431
1444
.10.1121/1.406827
30.
McGee
,
O. G.
, and
Kim
,
J. W.
,
2010
, “
Three-Dimensional Vibrations of Cylindrical Elastic Solids With V-Notches and Sharp Radial Cracks
,”
J. Sound Vib.
,
329
, pp.
457
484
.10.1016/j.jsv.2009.08.011
You do not currently have access to this content.