There is currently a trend toward increased usage of polymeric materials as functional materials because they are likely to experience force in the nanometer range. Thus, we describe here nanoindentation experiments in a polymer nanocomposite system with different nanoclay content and compare with the pristine counterpart. A Berkovich nanoindenter was used to conduct nanoscale deformation experiments using a load of 1–5 mN. The nanoindentation contact properties of relevance to functional applications notably hardness, modulus, and adhesion forces were studied. The addition of 8 wt% of nanoclay to high density polyethylene led to an increase in the indentation hardness by ∼30% and modulus by 25%. Furthermore, using load-displacement plots, the adhesion force between the indenter tip and the material's surface was measured. The adhesion force that is related to the stickiness of the surface was observed to decrease on the introduction of nanoclay in the polymer because of an increase in hardness and modulus of the nanocomposite, leading to a decrease in the area of interaction between the indenter tip and the probed surface. The resistance to nanoindentation of the nanocomposite is explained in terms of a shift in von Mises stress from the surface to the subsurface in the nanocomposite.

References

1.
Chan
,
C. M.
,
Wu
,
J.
,
Li
,
J. X.
, and
Cheung
,
Y. K.
,
2002
, “
Polypropylene/Calcium Carbonate Nanocomposites
,”
Polymer
,
43
, pp.
2981
2992
.10.1016/S0032-3861(02)00120-9
2.
Thio
,
Y. S.
,
Argon
,
A. S.
,
Cohen
,
R. E.
, and
Weinberg
,
M.
,
2002
, “
Toughening of Isostatic Polypropylene with CaCo3 Particles
,”
Polymer
,
43
, pp.
3661
3674
.10.1016/S0032-3861(02)00193-3
3.
Haworth
,
B.
,
Raymond
,
C. L.
, and
Sutherland
,
I.
,
2001
, “
Polyethylene Compounds Containing Mineral Filters Modified by Acid Coatings. 2: Factors Influencing Mechanical Properties
,”
Polym. Eng. Sci.
,
41
, pp.
1345
1364
.10.1002/pen.10835
4.
Albano
,
C.
,
Gonzalez
,
J.
,
Ichazo
,
M.
,
Rosales
,
C.
,
Urbina de Navarro
,
C.
, and
Parra
,
C.
,
2000
, “
Mechanical and Morphological Behavior of Polyolefin Blends in the Presence of CaCo3
,”
Compos. Struct.
,
48
, pp.
49
58
.10.1016/S0263-8223(99)00072-0
5.
Wang
,
Y.
, and
Wang
,
J. J.
,
1999
, “
Shear Yield Behavior of Calcium-Carbonate-Filled Polypropylene
,”
Polym. Eng. Sci.
,
39
, pp.
190
198
.10.1002/pen.11407
6.
Gonzalez
,
J.
,
Albano
,
C.
,
Ichazo
,
M.
, and
Diaz
,
B.
,
2002
, “
Effects of Coupling Agents on Mechanical and Morphological Behavior of the PP/HDPE Blend with Two Different CaCo3
,”
Eur. Polym. J.
,
38
, pp.
2465
2475
.10.1016/S0014-3057(02)00120-9
7.
Price
,
G. J.
, and
Ansari
,
D. M.
,
2004
, “
Surface Modification of Calcium Carbonate Studied by Inverse Gas Chromatography and the Effect on Mechanical Properties of Filled Polypropylene
,”
Polym. Int.
,
53
, pp.
430
438
.10.1002/pi.1392
8.
Vollenberg
,
P. H. Th.
, and
Heikens
,
D.
,
1990
, “
The Mechanical Properties of Chalk-Filled Polypropylene: A Preliminary Investigation
,”
J. Mater. Sci.
,
25
, pp.
3089
3095
.10.1007/BF00587655
9.
Bhushan
,
B.
,
1999
,
Handbook of Micro/Nanotribology, Vol. 2
,
CRC Press
,
Boca Raton, FL
.
10.
Bhushan
,
B.
,
1999
, “
Nanoscale Tribophysics and Tribomechanics
,”
Wear
,
225–229
(
1
),
465
492
.10.1016/S0043-1648(99)00018-6
11.
Bhushan
,
B.
,
Israelachvilli
,
J. N.
, and
Landman
,
U.
,
1995
, “
Nanotribiology: Friction, Wear, and Lubrication at the Atomic Scale
,”
Nature
,
374
, pp.
607
616
.10.1038/374607a0
12.
Wong
,
J. S. S.
,
Sue
,
H.-J.
,
Zeng
,
K. Y.
,
Li
,
R. K. Y.
, and
Mai
,
Y.-W.
,
2004
, “
Scratch Damage of Polymers in Nanoscale
,”
Acta Mater.
,
52
, pp.
431
443
.10.1016/j.actamat.2003.09.028
13.
Kim
,
J. K.
, and
Hodzic
,
A.
,
2003
, “
Nanoscale Characterisation of Thickness and Properties of Interphase in Polymer Matrix Composites
,”
J. Adhes.
,
79
, pp.
383
414
.10.1080/00218460309585
14.
Bhushan
,
B.
,
1999
, ed.,
Handbook of Micro/Nanotribology
,
CRC Press
,
Boca Raton, FL
, Chap. 7.
15.
Brown
,
H. R.
, and
Russell
,
T. P.
,
1996
, “
Entanglements at Polymer Surfaces and Interfaces
,”
Macromol.
,
29
, pp.
798
800
.10.1021/ma951123k
16.
Briscoe
,
B. J.
,
Evans
,
P. D.
,
Pellilo
,
E.
, and
Sinha
,
S. K.
,
1996
, “
Scratching Maps for Polymers
”,
Wear
,
200
, pp.
137
147
.10.1016/S0043-1648(96)07314-0
17.
Briscoe
,
B. J.
,
Pellilo
,
E.
,
Ragazzi
,
P.
, and
Sinha
,
S. K.
,
1998
, “
Scratch Deformation of Methanol Plasticized Poly(Methylmethacrylate) Surfaces
,”
Polymer
,
39
, pp.
2161
2168
.10.1016/S0032-3861(97)00493-X
18.
Dasari
,
A.
, and
Misra
,
R. D. K.
,
2004
, “
The Role of Micrometric Wollastonite Particles on Stress Whitening Behavior of Polypropylene Composites
,”
Acta Mater.
,
52
, pp.
1683
1697
.10.1016/j.actamat.2003.12.013
19.
Misra
,
R. D. K.
,
Hadal
,
R.
, and
Duncan
,
S. J.
,
2004
, “
Surface Damage Behavior During Scratch Deformation of Mineral Reinforced Polymer Composites
,”
Acta Mater.
,
52
, pp.
4363
4376
.10.1016/j.actamat.2004.06.003
20.
Nathani
,
H.
,
Dasari
,
A.
, and
Misra
,
R. D. K.
,
2004
, “
On the Reduced Susceptibility to Stress Whitening Behavior of Melt Intercalated Polybutene–Clay Nanocomposites During Tensile Straining
,”
Acta Mater.
,
52
, pp.
3217
3227
.10.1016/j.actamat.2004.03.021
21.
Dasari
,
A.
,
Rohrmann
,
J.
, and
Misra
,
R. D. K.
,
2003
, “
Microstructural Evolution During Tensile Deformation of Polypropylenes
,”
Mater. Sci. Eng. A
,
351
, pp.
200
213
.10.1016/S0921-5093(02)00854-7
22.
Dasari
,
A.
,
Rohrmann
,
J.
, and
Misra
,
R. D. K.
,
2003
, “
Microstructural Aspects of Surface Deformation Processes and Fracture of Tensile Strained High Isotactic Polypropylene
,”
Mater. Sci. Eng. A
,
358
, pp.
372
383
.10.1016/S0921-5093(03)00331-9
23.
Tanniru
,
M.
,
Yuan
,
Q.
, and
Misra
,
R. D. K.
,
2006
, “
On Significant Retention of Impact Strength in Clay–Reinforced High-Density Polyethylene (HDPE) Nanocomposites
,”
Polymer
,
47
, pp.
2133
2146
.10.1016/j.polymer.2006.01.063
24.
Yuan
,
Q.
, and
Misra
,
R. D. K.
,
2006
, “
Impact Fracture Behavior Of Clay–Reinforced Polypropylene Nanocomposites
,”
Polymer
,
47
, pp.
4421
4433
.10.1016/j.polymer.2006.03.105
25.
Wunderlich
,
B.
,
1980
,
Macromolecular Physics
,
Academic Press
,
New York
.
26.
Liu
,
C.-K.
,
Lee
,
S.
,
Sung
,
L.-P.
, and
Nguyen
,
T.
,
2006
, “
Load-Displacement Relations for Nanoindentation of Viscoelastic Materials
,”
J. Appl. Phys.
,
100
, p.
033503
.10.1063/1.2220649
27.
Shen
,
L.
,
Phang
,
Y. I.
,
Chen
,
L.
,
Liu
,
T.
, and
Zeng
,
K.
,
2004
, “
Nanoindentation and Morphological Studies on Nylon 66 Nanocomposites. I. Effect of Clay Loading
,”
Polymer
,
45
, pp.
3341
3349
.10.1016/j.polymer.2004.03.036
28.
Prasad
,
A.
,
Dao
,
M.
, and
Suresh
,
S.
,
2009
, “
Steady-State Frictional Sliding Contact on Surfaces of Plastically Graded Materials
,”
Acta Mater.
,
57
, pp.
511
524
.10.1016/j.actamat.2008.09.036
29.
Khan
,
A. S.
and
Huang
,
S.
,
1995
,
Continuum Theory of Plasticity
,
John Wiley and Sons
,
New York
.
30.
Venkatasurya
,
P. K. C.
,
Yuan
,
Q.
, and
Misra
,
R. D. K.
,
2011
, “
Micromechanism of Surface and Sub-Surface Deformation Behavior of High Density Polyethylene Containing Dispersion of Nanoparticles: An Electron Microscopy Study and Indenter-Substrate Interaction
,”
Mech. Mater.
,
43
, pp.
254
268
.10.1016/j.mechmat.2011.02.008
You do not currently have access to this content.