A fuzzy fiber reinforced composite (FFRC) reinforced with wavy zig-zag single-walled carbon nanotubes (CNTs) and carbon fibers is analyzed in this study. The distinct constructional feature of this composite is that the wavy CNTs are radially grown on the surface of carbon fibers. To study the effect of the waviness of CNTs on the elastic properties of the FFRC, analytical models based on the mechanics of materials (MOM) approach is derived. Effective elastic properties of the FFRC incorporating the wavy CNTs estimated by the MOM approach have been compared with those predicted by the Mori–Tanaka (MT) method. The values of the effective elastic properties of this composite are estimated in the presence of an interphase between the CNT and the polymer matrix which models the nonbonded van dar Waals interaction between the CNT and the polymer matrix. The effect of waviness of CNTs on the effective properties of the FFRC is investigated when the wavy CNTs are coplanar with two mutually orthogonal planes. The results demonstrate that the axial effective elastic properties of the FFRC containing wavy CNTs can be improved over those of the FFRC with straight CNTs.

References

References
1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
, pp.
56
58
.10.1038/354056a0
2.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
, pp.
678
680
.10.1038/381678a0
3.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2487
2499
.10.1016/S0020-7683(03)00056-8
4.
Shen
,
L.
, and
Li
,
J.
,
2004
, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
69
, p.
045414
.10.1103/PhysRevB.69.045414
5.
Xiao
,
J. R.
,
Gama
,
B. A.
, and
Gillespie
,
J. W.
,
2005
, “
An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
42
, pp.
3075
3092
.10.1016/j.ijsolstr.2004.10.031
6.
Batra
,
R. C.
, and
Sears
,
A.
,
2007
, “
Uniform Radial Expansion/Contraction of Carbon Nanotubes and Their Transverse Elastic Moduli
,”
Modell. Simul. Mater. Sci. Eng.
,
15
, pp.
835
844
.10.1088/0965-0393/15/8/001
7.
Batra
,
R. C.
, and
Gupta
,
S. S.
,
2008
, “
Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
,
75
, p.
061010
.10.1115/1.2965370
8.
Cheng
,
H. C.
,
Liu
,
Y. L.
,
Hsu
,
Y. C.
, and
Chen
,
W. H.
,
2009
, “
Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
46
, pp.
1695
1704
.10.1016/j.ijsolstr.2008.12.013
9.
Tsai
,
J. L.
,
Tzeng
,
S. H.
, and
Chiu
,
Y. T.
,
2010
, “
Characterizing Elastic Properties of Carbon Nanotube/Polyimide Nanocomposites Using Multi-Scale Simulation
,”
Composites, Part B
,
41
(
1
), pp.
106
115
.10.1016/j.compositesb.2009.06.003
10.
Thostenson
,
E. T.
, and
Chow
,
T. W.
,
2003
, “
On the Elastic Properties of Carbon Nanotube-Based Composites: Modeling and Characterization
,
J. Phys. D Appl. Phys.
,
36
(
5
), pp.
573
582
.10.1088/0022-3727/36/5/323
11.
Liu
,
Y. J.
, and
Chen
,
X. L.
,
2003
, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
,
35
, pp.
69
81
.10.1016/S0167-6636(02)00200-4
12.
Gao
,
X. L.
, and
Li
,
K.
,
2005
, “
A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites
,”
Int. J. Solids Struct.
,
42
, pp.
1649
1667
.10.1016/j.ijsolstr.2004.08.020
13.
Jiang
,
B.
,
Liu
,
C.
,
Zhang
,
C.
,
Liang
,
R.
, and
Wang
,
B.
,
2009
, “
Maximum Nanotube Volume Fraction and its Effect on Overall Elastic Properties of Nanotube-Reinforced Composites
,”
Composites, Part B
,
40
(
3
), pp.
212
217
.10.1016/j.compositesb.2008.11.003
14.
Esteva
,
M.
, and
Spanos
,
P. D.
,
2009
, “
Effective Elastic Properties of Nanotube Reinforced Composites With Slightly Weakened Interfaces
,”
J. Mech. Mater. Struct.
,
4
, pp.
887
900
.10.2140/jomms.2009.4.887
15.
Mathur
,
R. B.
,
Chatterjee
,
S.
, and
Singh
,
B. P.
,
2008
, “
Growth of Carbon Nanotubes on Carbon Fiber Substrates to Produce Hybrid/Phenolic Composites With Improved Mechanical Properties
,”
Compos. Sci. Technol.
,
68
, pp.
1608
1615
.10.1016/j.compscitech.2008.02.020
16.
Garcia
,
E. J.
,
Wardle
,
B. L.
,
Hart
,
A. J.
, and
Yamamoto
,
N.
,
2008
, “
Fabrication and Multifunctional Properties of a Hybrid Laminate With Aligned Carbon Nanotubes Grown In Situ
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2034
2041
.10.1016/j.compscitech.2008.02.028
17.
Lin
,
Y.
,
Gregory
,
E.
, and
Sodano
,
H. A.
,
2009
, “
Increased Interface Strength in Carbon Fiber Composites Through a ZnO Nanowire Interphase
,”
Adv. Funct. Mater.
,
19(16)
,
2654
2660
.10.1002/adfm.200900011
18.
Ray
,
M. C.
,
Guzman de Villoria
,
R.
, and
Wardle
,
B. L.
,
2009
, “
Load Transfer Analysis in Short Carbon Fibers With Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix
,”
J. Adv. Mater.
,
41
(
4
), pp.
82
94
.
19.
Ray
,
M. C.
,
2010
, “
Concept for a Novel Hybrid Smart Composite Reinforced With Radially Aligned Zigzag Carbon Nanotubes on Piezoelectric Fibers
,”
Smart Mater. Struct.
,
19
, p.
035008
.10.1088/0964-1726/19/3/035008
20.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2011
, “
Micromechanical Analysis of Fuzzy Fiber Reinforced Composites
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
149
166
.10.1007/s10999-011-9156-4
21.
Shaffer
,
M. S. P.
, and
Windle
,
A. H.
,
1999
, “
Fabrication and Characterization of Carbon Nanotube/Poly(Vinyl Alcohol) Composites
,”
Adv. Mater.
,
11
(
11
), pp.
937
941
.10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
22.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
,
2000
, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
,
76
(
20
), pp.
2868
2870
.10.1063/1.126500
23.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2002
, “
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
,
80
(
24
), pp.
4647
4649
.10.1063/1.1487900
24.
Berhan
,
L.
,
Yi
,
Y. B.
, and
Sastry
,
A. M.
,
2004
, “
Effect of Nanorope Waviness on the Effective Moduli of Nanotube Sheets
,”
J. Appl. Phys.
,
95
(
9
), pp.
5027
5034
.10.1063/1.1687989
25.
Shi
,
D. L.
,
Feng
,
X. Q.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2004
, “
The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
250
257
.10.1115/1.1751182
26.
Anumandla
,
V.
, and
Gibson
,
R. F.
,
2006
, “
A Comprehensive Closed Form Micromechanics Model for Estimating the Elastic Modulus of Nanotube-Reinforced Composites
,”
Composites, Part A
,
37
(
12
), pp.
2178
2185
.10.1016/j.compositesa.2005.09.016
27.
Shao
,
L. H.
,
Luo
,
R. Y.
,
Bai
,
S. L.
, and
Wang
,
J.
,
2009
, “
Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites With Waviness and Debonding
,”
Composite Struct.
,
87
(
3
), pp.
274
281
.10.1016/j.compstruct.2008.02.011
28.
Smith
,
W. A.
, and
Auld
,
B. A.
,
1991
, “
Modeling 1-3 Composite Piezoelectrics: Thickness Mode Oscillations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
38
(
1
), pp.
40
47
.10.1109/58.67833
29.
Benveniste
,
Y.
, and
Dvorak
,
G. J.
,
1992
, “
Uniform Fields and Universal Relations in Piezoelectric Composites
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1295
1312
.10.1016/0022-5096(92)90016-U
30.
Hsiao
,
H. M.
, and
Daniel
,
I. M.
,
1996
, “
Elastic Properties of Composites With Fiber Waviness
,”
Composites, Part A
,
27
(
10
), pp.
931
941
.10.1016/1359-835X(96)00034-6
31.
Dunn
,
M. L.
, and
Ledbetter
,
H.
,
1995
, “
Elastic Moduli of Composites Reinforced by Multiphase Particles
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
1023
1028
.10.1115/1.2896038
32.
Qui
,
Y. P.
, and
Weng
,
G. J.
,
1990
, “
On the Application of Mori-Tanaka's Theory Involving Transversely Isotropic Spheroidal Inclusions
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1121
1137
.10.1016/0020-7225(90)90112-V
33.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
34.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
1998
, “
Anisotropic Coupled-Field Inclusion and Inhomogeneity Problems
,”
Philos. Mag. A
,
77
(
5
), pp.
1341
1350
.10.1080/01418619808214256
35.
Honjo
,
K.
,
2007
, “
Thermal Stresses and Effective Properties Calculated for Fiber Composites Using Actual Cylindrically-Anisotropic Properties of Interfacial Carbon Coating
,”
Carbon
,
45
(
4
), pp.
865
872
.10.1016/j.carbon.2006.11.007
36.
Odegard
,
G. M.
,
Clancy
,
T. C.
, and
Gates
,
T. S.
,
2005
, “
Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites
,”
Polymer
,
46
(
2
), pp.
553
562
.10.1016/j.polymer.2004.11.022
You do not currently have access to this content.