A controllable experimental method using a two-hemispherical-bead setup and a split Hopkinson pressure bar (SHPB) apparatus is implemented to study the dynamic elasto-plastic contact laws between ductile beads in contact. Beads made of four different metals, either rate sensitive (stainless steel 302 and 440C) or rate insensitive (Al alloy 2017 and brass alloy 260), are used. The experimental elasto-plastic contact force-displacement curves are obtained under different loading rates. The effects of material rate sensitivity and bead pair size on the contact laws are studied, and the way that the rate sensitivity of the materials translates to rate sensitivity contact force-displacement relations is explored. The transmitted energy ratio, which is related to the macroscale concept of a coefficient of restitution, is also calculated and, for all materials, shows a decrease with increasing impact speed. In addition, the experimental contact force–displacement data, residual compressive displacement, and diameter of yield area are compared with predictions from several widely-used theoretical models to generalize these experimental results to arbitrary contact situations.

References

References
1.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 4.
2.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2006
, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
(
5
), p.
058002
.10.1103/PhysRevLett.96.058002
3.
Porter
,
M. A.
,
Daraio
,
C.
,
Szelengowicz
,
I.
,
Herbold
,
E. B.
, and
Kevrekidis
,
P. G.
,
2009
, “
Highly Nonlinear Solitary Waves in Heterogeneous Periodic Granular Media
,”
J. Phys. D
,
238
(
6
), pp.
666
676
.10.1016/j.physd.2008.12.010
4.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
2000
, “
A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation
,”
ASME J. Appl. Mech.
,
67
, pp.
363
371
.10.1115/1.1305334
5.
Li
,
F.
,
Pan
,
J.
, and
Sinka
,
C.
,
2009
, “
Contact Laws Between Solid Particles
,”
J. Mech. Phys. Solids
,
57
, pp.
1194
1208
.10.1016/j.jmps.2009.04.012
6.
Kumar
,
P. R.
, and
Geubelle
,
P.
,
2012
, “
Wave Propagation in Elasto-Plastic Granular Systems
,”
Phys. Rev. E
(to be submitted).
7.
Cundall
,
P.
, and
Strack
,
O.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
, pp.
47
65
.10.1680/geot.1979.29.1.47
8.
Sadd
,
M. H.
,
Tai
,
Q. M.
, and
Shukla
,
A.
1993
, “
Contact Law Effects on Wave-Propagation in Particulate Materials Using Distinct Element Modeling
,”
Int. J. Non-Linear Mech.
,
28
(
2
), pp.
251
265
.10.1016/0020-7462(93)90061-O
9.
Luding
,
S.
,
2004
, “
Molecular Dynamics Simulations of Granular Materials
,”
The Physics of Granular Media
,
H.
Hinrichsen
, and
D.
Wolf
, eds.,
Wiley-VCH
,
Weinheim, Germany
.
10.
Awasthia
,
A. P.
,
Smith
,
K. J.
,
Geubellea
,
P. H.
, and
Lambros
,
J.
,
2012
, “
Propagation of Solitary Waves in 2D Granular Media: A Numerical Study
,”
Mech. Mater.
(submitted).
11.
Kuwaara
,
G.
, and
Kono
,
K.
,
1987
, “
Restitution Coefficient in a Collision Between Two Spheres
,”
Jpn. J. Appl. Phys.
,
26
, pp.
1230
1233
.10.1143/JJAP.26.1230
12.
Stronge
,
W. J.
,
1995
, “
Theoretical Coefficient of Restitution for Planar Impact of Rough Elasto-Plastic Bodies
,” Proceedings of the ASME/AMD Symposium, Impact Waves, and Fracture, Vol. 205, Los Angeles, CA, June 28–30, pp.
351
362
.
13.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
, pp.
383
386
.10.1115/1.2787319
14.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
,
2000
, “
Frictionless Indentation of Dissimilar Elastic-Plastic Spheres
,”
Int. J. Solids. Struct.,
37
, pp.
7071
7091
.10.1016/S0020-7683(99)00328-5
15.
Wu
,
C.
,
Li
,
L.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic–Plastic Spheres
,”
Int. J. Impact Eng.
,
32
, pp.
593
604
.10.1016/j.ijimpeng.2005.08.007
16.
Jackson
,
R. L.
,
Green
,
I.
, and
Marghitu
,
D. B.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
, pp.
217
229
.10.1007/s11071-009-9591-z
17.
Labous
,
L. R.
,
Rosato
,
A. D.
, and
Dave
,
R. N.
,
1997
, “
Measurements of Collisional Properties of Spheres Using High-Speed Video Analysis
,”
Phys. Rev. E.
,
56
, pp.
5717
5725
.10.1103/PhysRevE.56.5717
18.
Weir
,
G.
, and
Tallon
,
S.
,
2005
, “
The Coefficient of Restitution for Normal Incident, Low Velocity Particle Impacts
,”
Chem. Eng. Sci.
,
60
, pp.
3637
3647
.10.1016/j.ces.2005.01.040
19.
Stevens
,
A. B.
, and
Hrenya
,
C. M.
,
2005
, “
Comparison of Soft-Sphere Models to Measurements of Collision Properties During Normal Impacts
,”
Powder Technol.
,
154
, pp.
99
109
.10.1016/j.powtec.2005.04.033
20.
Minamoto
,
H.
, and
Kawamura
,
S.
,
2011
, “
Moderately High Speed Impact of Two Identical Spheres
,”
Int. J. Impact Eng.
,
38
, pp.
123
129
.10.1016/j.ijimpeng.2010.09.005
21.
King
,
H.
,
White
,
R.
,
Maxwell
,
I.
, and
Menon
,
N.
,
2011
, “
Inelastic Impact of a Sphere on a Massive Plane: Nonmonotonic Velocity-Dependence of the Restitution Coefficient
,”
Europhys. Lett.
,
93
, p.
14002
.10.1209/0295-5075/93/14002
22.
Black
,
J. T.
, and
Kohser
,
R. A.
,
2003
,
DeGarmo's Materials and Processes in Manufacturing
,
9th ed.
,
Wiley
,
Hoboken, NJ
.
23.
Nordberg
,
H.
,
2004
, “
Note on the Sensitivity of Stainless Steels to Strain Rate
,” Research Report No. 04.0-1, AvestaPolarit Research Foundation, Sheffield Hallam University, Sheffield, UK.
24.
Euro Inox
,
2002
, “
Design Manual For Structural Stainless Steel—Commentary
,” The Steel Construction Institute, Ascot, UK, Chap. C3.
25.
Chen
,
W.
, and
Song
,
B.
,
2011
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
,
Springer
,
New York
.
26.
On
,
T.
, and
Lambros
,
J.
,
2012
, “
Development of Solitary Waves in 1-D Ductile Granular Chain
,”
Mech. Mater.
, (to be submitted).
You do not currently have access to this content.