In this paper, the vibrational behavior of double-walled carbon nanotubes (DWCNTs) is studied by a nonlocal elastic shell model. The nonlocal continuum model accounting for the small scale effects encompasses its classical continuum counterpart as a particular case. Based upon the constitutive equations of nonlocal elasticity, the displacement field equations coupled by van der Waals forces are derived. The set of governing equations of motion are then numerically solved by a novel method emerged from incorporating the radial point interpolation approximation within the framework of the generalized differential quadrature method. The present analysis provides the possibility of considering different combinations of layerwise boundary conditions. The influences of small scale factor, layerwise boundary conditions and geometrical parameters on the mechanical behavior of DWCNTs are fully investigated. Explicit expressions for the nonlocal frequencies of DWCNTs with all edges simply supported are also analytically obtained by a nonlocal elastic beam model. Some new intertube resonant frequencies and the corresponding noncoaxial vibrational modes are identified due to incorporating circumferential modes into the shell model. A shift in noncoaxial mode numbers, not predictable by the beam model, is also observed when the radius of DWCNTs is varied. The results generated also provide valuable information concerning the applicability of the beam model and new noncoaxial modes affecting the physical properties of nested nanotubes.

References

References
1.
Kroto
,
H. W.
,
Heath
,
J. R.
,
O'Brien
,
S. C.
, and
Curl
,
R. F.
,
1985
, “
Smalley RE, C60: Buckminsterfullerene
,”
Nature
,
318
, pp.
162
163
.10.1038/318162a0
2.
Iijima
,
S.
,
1991
, “
Helical Microtubes of Graphitic Carbon
,”
Nature
,
8
, pp.
354
356
.10.1038/354056a0
3.
Kong
,
X. Y.
,
Ding
,
Y.
,
Yang
,
R.
, and
Wang
,
Z. L.
,
2004
, “
Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts
,”
Science
,
303
, pp.
1348
1351
.10.1126/science.1092356
4.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
,
1996
, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
,
104
(
5
), pp.
2089
2092
.10.1063/1.470966
5.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1997
, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
,
8
, pp.
341
348
.10.1016/S0927-0256(97)00047-5
6.
Hernandez
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
,
1998
, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
,
80
, pp.
4502
4505
.10.1103/PhysRevLett.80.4502
7.
Sanchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejón
,
P.
,
1999
, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
59
, pp.
12678
12688
.10.1103/PhysRevB.59.12678
8.
Qian
,
D.
,
Wagner
,
J. G.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
,
2002
, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
,
55
, pp.
495
533
.10.1115/1.1490129
9.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instability Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
, pp.
2511
2514
.10.1103/PhysRevLett.76.2511
10.
Ru
,
C. Q.
,
2001
, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
,
49
, pp.
1265
1279
.10.1016/S0022-5096(00)00079-X
11.
Peng
,
J.
,
Wu
,
J.
,
Hwang
,
K. C.
,
Song
,
J.
, and
Huang
,
Y.
,
2008
, “
Can a Single-Wall Carbon Nanotube Be Modeled as a Thin Shell?
,”
J. Mech. Phys. Solids
,
56
, pp.
2213
2224
.10.1016/j.jmps.2008.01.004
12.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
,
2002
, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
,
65
, pp.
235430
235438
.10.1103/PhysRevB.65.235430
13.
Zhang
,
P.
,
Huang
,
Y.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2002
, “
Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials
,”
J. Appl. Mech.
,
69
, pp.
454
458
.10.1115/1.1469002
14.
Zhang
,
P.
,
Huang
,
Y. G.
,
Geubelle
,
P. H.
, and
Hwang
,
K. C.
,
2002
, “
On the Continuum Modeling of Carbon Nanotubes
,”
Acta Mech. Sin.
,
18
, pp.
528
536
.10.1007/BF02486578
15.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
,
2002
, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
,
39
, pp.
3893
3906
.10.1016/S0020-7683(02)00186-5
16.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2008
, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
, pp.
279
292
.10.1016/j.jmps.2007.05.008
17.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
, pp.
4703
4710
.10.1063/1.332803
18.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer
,
New York
.
19.
Peddieson
,
J.
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
,
2003
, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
,
41
, pp.
305
312
.10.1016/S0020-7225(02)00210-0
20.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2003
, “
Vibration of an Embedded Multiwall Carbon Nanotube
,”
Compos. Sci. Tech.
,
63
, pp.
1533
1542
.10.1016/S0266-3538(03)00058-7
21.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
,
2005
, “
Vibration and Instability of Carbon Nanotubes Conveying Fluid
,”
Compos. Sci. Tech.
,
65
, pp.
1326
1336
.10.1016/j.compscitech.2004.12.002
22.
Zhang
,
Y.
,
Liu
,
G.
, and
Han
,
X.
,
2005
, “
Transverse Vibrations of Double-Walled Carbon Nanotubes Under Compressive Axial Load
,”
Phys. Lett. A
,
340
, pp.
258
266
.10.1016/j.physleta.2005.03.064
23.
Fu
,
Y. M.
,
Hong
,
J. W.
, and
Wang
,
X. Q.
,
2006
, “
Analysis of Nonlinear Vibration for Embedded Carbon Nanotubes
,”
J. Sound Vib.
,
296
, pp.
746
756
.10.1016/j.jsv.2006.02.024
24.
Wang
,
C. M.
,
Tan
,
V. B. C.
, and
Zhang
,
Y. Y.
,
2006
, “
Timoshenko Beam Model for Vibration Analysis of Multi-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
294
, pp.
1060
1072
.10.1016/j.jsv.2006.01.005
25.
Wang
,
Q.
, and
Varadan
,
V. K.
,
2006
, “
Wave Characteristics of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
43
, pp.
254
265
.10.1016/j.ijsolstr.2005.02.047
26.
Wang
,
L.
,
Ni
,
Q.
,
Li
,
M.
, and
Qian
,
Q.
,
2008
, “
The Thermal Effect on Vibration and Instability of Carbon Nanotubes Conveying Fluid
,”
Physica E
,
40
, pp.
3179
3182
.10.1016/j.physe.2008.05.009
27.
Aydogdu
,
M.
,
2008
, “
Vibration of Multi-Walled Carbon Nanotubes by Generalized Shear Deformation Theory
,”
Int. J. Mech. Sci.
,
50
, pp.
837
844
.10.1016/j.ijmecsci.2007.10.003
28.
Xu
,
K. Y.
,
Aifantis
,
E. C.
, and
Yan
,
Y. H.
,
2008
, “
Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes
,”
J. Appl. Mech.
,
75
, p.
021013
.10.1115/1.2793133
29.
Elishakoff
,
I.
, and
Pentaras
,
D.
,
2009
, “
Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
322
, pp.
652
664
.10.1016/j.jsv.2009.02.037
30.
Ansari
,
R.
,
Hemmatnezhad
,
M.
, and
Ramezannezhad
,
H.
,
2009
, “
Application of HPM to the Nonlinear Vibrations of Multiwalled Carbon Nanotubes
,”
Numer. Meth. Par. Diff. Eqs.
,
26
, pp.
490
500
.10.1002/num.20499
31.
Ansari
,
R.
, and
Hemmatnezhad
,
M.
,
2011
, “
Nonlinear Vibrations of Embedded Multi-Walled Carbon Nanotubes Using a Variational Approach
,”
Math. Comput. Model.
,
53
, pp.
927
938
.10.1016/j.mcm.2010.10.029
32.
Ansari
,
R.
,
Hemmatnezhad
,
M.
, and
Rezapour
,
J.
,
2011
, “
The Thermal Effect on Nonlinear Oscillations of Carbon Nanotubes With Arbitrary Boundary Conditions
,”
Curr. Appl. Phys.
,
11
, pp.
692
697
.10.1016/j.cap.2010.11.034
33.
He
,
X. Q.
,
Kitipornchaia
,
S.
, and
Liew
,
K. M.
,
2005
, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for van der Waals Interaction
,”
J. Mech. Phys. Solids
,
53
, pp.
303
326
.10.1016/j.jmps.2004.08.003
34.
Natsuki
,
T.
, and
Endo
,
M.
,
2006
, “
Vibration Analysis of Embedded Carbon Nanotubes Using Wave Propagation Approach
,”
J. Appl. Phys.
,
99
, p.
034311
.10.1063/1.2170418
35.
Liew
,
K. M.
, and
Wang
,
Q.
,
2007
, “
Analysis of Wave Propagation in Carbon Nanotubes Via Elastic Shell Theories
,”
Int. J. Eng. Sci.
,
45
, pp.
227
241
.10.1016/j.ijengsci.2007.04.001
36.
Sun
,
C.
, and
Liu
,
K.
,
2007
, “
Vibration of Multi-Walled Carbon Nanotubes With Initial Axial Loading
,”
Solid State Commun.
,
143
, pp.
202
207
.10.1016/j.ssc.2007.05.027
37.
Yan
,
Y.
,
Wang
,
W. Q.
, and
Zhang
,
L. X.
,
2009
, “
Noncoaxial Vibration of Fluid-Filled Multiwalled Carbon Nanotubes
,”
Appl. Math. Modell.
,
34
, pp.
122
128
.10.1016/j.apm.2009.03.031
38.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
, pp.
2487
2499
.10.1016/S0020-7683(03)00056-8
39.
Tserpes
,
K. I.
, and
Papanikos
,
P.
,
2005
, “
Finite Element Modeling of Single-Walled Carbon Nanotubes
,”
Composites: Part B
,
36
, pp.
468
477
.10.1016/j.compositesb.2004.10.003
40.
Wang
,
Q.
,
Zhou
,
G. Y.
, and
Lin
,
K. C.
,
2006
, “
Scale Effect on Wave Propagation of Double-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
43
, pp.
6071
6084
.10.1016/j.ijsolstr.2005.11.005
41.
Wang
,
Q.
, and
Varadan
,
V. K.
,
2006
, “
Vibration of Carbon Nanotubes Studied Using Nonlocal Continuum Mechanics
,”
Smart Mater. Struct.
,
15
, pp.
659
666
.10.1088/0964-1726/15/2/050
42.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
,
2007
, “
Application of Nonlocal Beam Models for Carbon Nanotubes
,”
Int. J. Solids Struct.
,
44
, pp.
5289
5300
.10.1016/j.ijsolstr.2006.12.034
43.
Reddy
,
J. N.
,
2007
, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
, pp.
288
307
.10.1016/j.ijengsci.2007.04.004
44.
Wang
,
Q.
, and
Wang
,
C. M.
,
2007
, “
The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modeling Carbon Nanotubes
,”
Nanotechnology
18
, p.
075702
.10.1088/0957-4484/18/7/075702
45.
Wang
,
C. M.
,
Zhang
,
Y. Y.
, and
He
,
X. Q.
,
2007
, “
Vibration of Nonlocal Timoshenko Beams
,”
Nanotechnology
,
18
, p.
105401
.10.1088/0957-4484/18/10/105401
46.
Khosravian
,
N.
, and
Rafii-Tabar
,
H.
,
2008
, “
Computational Modelling of a Non-Viscous Fluid Flow in a Multi-Walled Carbon Nanotube Modelled as a Timoshenko Beam
,”
Nanotechnology
,
19
, p.
275703
.10.1088/0957-4484/19/27/275703
47.
Heireche
,
H.
,
Tounsi
,
A.
, and
Benzair
,
A.
,
2008
, “
Scale Effect on Wave Propagation of Double-Walled Carbon Nanotubes With Initial Axial Loading
,”
Nanotechnology
,
19
, p.
185703
.10.1088/0957-4484/19/18/185703
48.
Heireche
,
H.
,
Tounsi
,
A.
,
Benzair
,
A.
,
Maachou
,
M.
, and
Adda Bedia
,
E. A.
,
2008
, “
Sound Wave Propagation in Single-Walled Carbon Nanotubes Using Nonlocal Elasticity
,”
Physica E
,
40
, pp.
2791
2799
.10.1016/j.physe.2007.12.021
49.
Aydogdu
,
M.
,
2009
, “
Axial Vibration of the Nanorods With the Nonlocal Continuum Rod Model
,”
Physica E
,
41
, pp.
861
864
.10.1016/j.physe.2009.01.007
50.
Murmu
,
T.
, and
Pradhan
,
S. C.
,
2009
, “
Small-Scale Effect on the Vibration of Non-Uniform Nanocantilever Based on Nonlocal Elasticity Theory
,”
Physica E.
,
41
, pp.
1451
1456
.10.1016/j.physe.2009.04.015
51.
Murmu
,
T.
, and
Pradhan
,
S. C.
,
2009
, “
Thermo-Mechanical Vibration of a Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Elasticity Theory
,”
Comput. Mat. Sci.
,
46
, pp.
854
859
.10.1016/j.commatsci.2009.04.019
52.
Lei
,
X.
,
Natsuki
,
T.
,
Shi
,
J.
, and
Ni
,
Q.
,
2012
, “
Surface Effects on the Vibrational Frequency of Double-Walled Carbon Nanotubes Using the Nonlocal Timoshenko Beam Model
,”
Composites: Part B
,
43
, pp.
64
69
.10.1016/j.compositesb.2011.04.032
53.
Li
,
R.
, and
Kardomateas
,
G. A.
,
2007
, “
Vibration Characteristics of Multiwalled Carbon Nanotubes Embedded in Elastic Media by a Nonlocal Elastic Shell Model
,”
J. Appl. Mech.
74
, pp.
1087
1094
.10.1115/1.2722305
54.
Wang
,
Q.
, and
Varadan
,
V. K.
,
2007
, “
Application of Nonlocal Elastic Shell Theory in Wave Propagation Analysis of Carbon Nanotubes
,”
Smart Mater. Struct.
,
16
, pp.
178
190
.10.1088/0964-1726/16/1/022
55.
Hu
,
Y. G.
,
Liew
,
K. M.
,
Wang
,
Q.
,
He
,
X. Q.
, and
Yakobson
,
B. I.
,
2008
, “
Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
, pp.
3475
3485
.10.1016/j.jmps.2008.08.010
56.
Arash
,
B.
, and
Ansari
,
R.
,
2010
, “
Evaluation of Nonlocal Parameter in the Vibrations of Single-Walled Carbon Nanotubes With Initial Strain
,”
Physica E
,
42
, pp.
2058
2064
.10.1016/j.physe.2010.03.028
57.
Liu
,
G. R.
,
2003
,
Mesh Free Methods Moving Beyond the Finite Element Method
,
CRC Press
,
Boca Raton, FL
.
58.
Ansari
,
R.
,
Sahmani
,
S.
, and
Arash
,
B.
,
2010
, “
Nonlocal Plate Model for Free Vibrations of Single-Layered Graphene Sheets
,”
Phys. Lett. A
,
375
, pp.
53
62
.10.1016/j.physleta.2010.10.028
59.
Ansari
,
R.
,
Arash
,
B.
, and
Rouhi
,
H.
,
2011
, “
Vibration Characteristics of Embedded Multi-Layered Graphene Sheets With Different Boundary Conditions Via Nonlocal Elasticity
,”
Compos. Struct.
,
93
, pp.
2419
2429
.10.1016/j.compstruct.2011.04.006
60.
Flügge
,
W.
,
1960
,
Stresses in Shells
,
Springer
,
Berlin
.
61.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
62.
Nanorex Inc.
,
2005
, NanoHive-1 v. 1.2.0-b1, www.nanoengineer-1.com
You do not currently have access to this content.