Piezoelectric bimorph benders are a particular class of piezoelectric devices, which are characterized by the ability to produce flexural deformation greatly larger than the length or thickness deformation of a single piezoelectric layer. Due to extensive dimensional reduction of devices and to the high accuracy and repeatability requested, the effect of erroneous parameter estimation and the fluctuation of parameters due to external reasons, sometimes, cannot be omitted. As such, we consider mechanical, electrical and piezoelectric parameters as uniformly distributed around a nominal value and we calculate the distribution of natural frequencies of the device. We consider an analytical model for the piezoelectric bimorph proposed in literature. The results show how the parameters errors are reflected on the natural frequencies and how an increment of the error is able to change the shape of the frequencies distribution.

References

References
1.
Wang
,
S. Y.
,
2004
, “
A Finite Element Model for the Static and Dynamic Analysis of a Piezoelectric Bimorph
,”
Int. J. Solids Struct.
,
41
, pp.
4075
4096
.10.1016/j.ijsolstr.2004.02.058
2.
Fernandes
,
A.
, and
Pouget
,
J.
,
2003
, “
Analytical and Numerical Approaches to Piezoelectric Bimorph
,”
Int. J. Solids Struct.
,
40
, pp.
4331
4352
.10.1016/S0020-7683(03)00222-1
3.
Steel
,
M. R.
,
Harrison
,
F.
, and
Harper
,
P. G.
,
1978
, “
The Piezoelectric Bimorph: An Experimental and Theoretical Study of its Quasistatic Response
,”
J. Phys. D: Appl. Phys.
,
11
, pp.
979
989
.10.1088/0022-3727/11/6/017
4.
Lim
,
C. W.
,
He
,
L. H.
, and
Soh
,
A. K.
,
2001
, “
Three-Dimensional Electromechanical Responses of a Parallel Piezoelectric Bimorph
,”
Int. J. Solids Struct.
,
38
, pp.
2833
2849
.10.1016/S0020-7683(00)00186-4
5.
Lu
,
P.
, and
Lee
,
K. H.
,
2003
, “
An Alternative Derivation of Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorph
,”
J. Sound Vib.
,
266
, pp.
723
735
.10.1016/S0022-460X(02)01579-1
6.
Zhou
,
Y.-G.
,
Chen
,
Y.-M.
, and
Ding
,
H.-J.
,
2005
, “
Analytical Solutions to Piezoelectric Bimorphs Based on Improved FSDT Beam Model
,”
Int. J. Smart Struct. Syst.
,
1
, pp.
309
324
.
7.
Timoshenko
,
S. P.
,
1937
,
Vibration Problems in Engineering
,
Van Nostrand
,
New York
.
8.
Hutchinson
,
J. R.
,
1980
, “
Vibrations of Solid Cylinders
,”
ASME J. Appl. Mech.
,
47
, pp.
901
907
.10.1115/1.3153811
9.
Hutchinson
,
J. R.
,
1981
, “
Transverse Vibrations of Beams, Exact Versus Approximate Solutions
,”
ASME J. Appl. Mech.
,
48
, pp.
923
928
.10.1115/1.3157757
10.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
Boston
.
11.
Pickett
,
G.
,
1944
, “
Application of the Fourier Method to the Solution of Certain Boundaries Problems in the Theory of Elasticity
,”
ASME J. Appl. Mech.
,
11
, pp.
40
43
.
12.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
, pp.
335
340
.10.1115/1.3625046
13.
Kawashima
,
H.
,
1996
, “
The Shear Coefficient for Quartz Crystal of Rectangular Cross Section in Timoshenko's Beam Theory
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
, pp.
434
440
.10.1109/58.489402
14.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
, pp.
293
297
.
15.
Smits
,
J. G.
,
Dalke
,
S. I.
, and
Cooney
,
T. K.
,
1991
, “
The Constituent Equations of Piezoelectric Bimorphs
,”
Sens. Actuators A
,
28
, pp.
41
60
.10.1016/0924-4247(91)80007-C
16.
Amici
,
C.
,
Borboni
,
A.
, and
Faglia
,
R.
,
2010
, “
A Compliant PKM Mesomanipulator: Kinematic and Dynamic Analyses
,”
Adv. Mech. Eng.
,
2010
, p.
706023
.10.1155/2010/706023
17.
Amici
,
C.
,
Borboni
,
A.
,
Faglia
,
R.
,
Fausti
,
D.
, and
Magnani
,
P. L.
,
2008
, “
A Parallel Compliant Meso-Manipulator for Finger Rehabilitation Treatments: Kinematic and Dynamic Analysis
,” Proceedings of the
IEEE
/RSJ
International Conference on Intelligent Robots and Systems
, Nice, France, September 22–26, pp.
735
740
.10.1109/IROS.2008.4651029
18.
Borboni
,
A.
,
De Santis
,
D.
, and
Faglia
,
R.
,
2006
, “
Stochastic Analysis of Free Vibrations in Piezoelectric Bimorphs
,”
Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis
(
ESDA2006
), Torino, Italy, July 4–7.10.1115/ESDA2006-95117
You do not currently have access to this content.