We revisit the poromechanics set up by Olivier Coussy for better understanding of the mechanical effect of partial freezing in cohesive porous materials. This approach proves to be able to quantitatively predict swelling even if the in-pore liquid does not expand when solidifying. In this case, dilation results from the so-called cryosuction process that dominates thermal shrinkage under cooling, as shown in our analysis conducted on the historical experiment run by Beaudoin and MacInnis (1974, “The Mechanism of Frost Damage in Hardened Cement Paste,” Cem. Concr. Res., 4, pp. 139–147) on benzene saturated 24-h old cement paste. Both mechanisms are also at work when freezing water saturated early age cement paste with air voids. In this case, the cryosuction process results in shrinkage and should be added to the thermal shrinkage, their respective amplitudes being temperature dependent but, a priori, of the same order of magnitude.

References

References
1.
Beaudoin
,
J.
, and
MacInnis
,
C.
,
1974
, “
The Mechanism of Frost Damage in Hardened Cement Paste
,”
Cem. Concr. Res.
,
4
, pp.
139
147
.10.1016/0008-8846(74)90128-8
2.
Powers
,
T. C.
,
1949
, “
The Air Requirement of Frost-Resistant Concrete
,”
Proc. Highw. Res. Board
,
29
, pp.
184
211
.
3.
Coussy
,
O.
,
2010
,
Mechanics and Physics of Porous Solids
,
Wiley
,
New York
.
4.
Sun
,
Z.
, and
Scherer
,
G. W.
,
2010
, “
Effect of Air Voids on Salt Scaling and Internal Freezing
,”
Cem. Concr. Res.
,
40
, pp.
260
270
.10.1016/j.cemconres.2009.09.027
5.
Scherer
,
G. W.
,
1993
,
Freezing Gels
,
J. Non-Cryst. Solids
,
155
, pp.
1
25
.10.1016/0022-3093(93)90467-C
6.
Scherer
,
G. W.
,
1999
, “
Crystallization in Pores
,”
Cem. Concr. Res.
,
29
, pp.
1347
1358
.10.1016/S0008-8846(99)00002-2
7.
Scherer
,
G. W.
,
2011
, “
Poromechanics of Frost Damage
,”
Proceedings of the Symposium on Mechanics and Physics of Porous Solids: A Tribute to Pr. Olivier Coussy
,
IFSTTAR
,
France
.
8.
Valenza
,
J. J.
, and
Scherer
,
G. W.
,
2005
, “
Mechanisms of Salt Scaling
,”
Mater. Struct.
,
38
, pp.
479
488
.10.1007/BF02482144
9.
Coussy
,
O.
,
2004
,
Poromechanics
,
Wiley
,
New York
.
10.
Coussy
,
O.
,
2005
, “
Poromechanics of Freezing Materials
,”
J. Mech. Phys. Solids
,
53
, pp.
1689
1718
.10.1016/j.jmps.2005.04.001
11.
Coussy
,
O.
,
2007
, “
Revisiting the Constitutive Equations of Unsaturated Porous Solids Using a Lagrangian Saturation Concept
,”
Int. J. Numer. Anal. Methods Geomech.
,
31
, pp.
1675
1694
.10.1002/nag.613
12.
Fabbri
,
A.
,
2006
, “
Physico-Mécanique des Matériaux Cimentaires Soumis au Gel/Dégel
,”
Ph.D. thesis
,
Université de Marne-la-Vallée
,
France
.
13.
Dangla
,
P.
, and
Fen-Chong
,
T.
,
2010
, “
Invited Lectures on Physics and Mechanics of Porous Media
,”
Tsinghua University
,
Beijing, P. R. C.
, June 1–9, 2010.
14.
Fen-Chong
,
T.
,
Fabbri
,
A.
,
Dangla
,
P.
, and
Monteiro
,
P. J. M.
,
2011
, “
Freezing in Porous Materials: A Short Tribute to Olivier Coussy Novelty
,”
Proceedings of the Symposium on Mechanics and Physics of Porous Solids: A Tribute to Pr. Olivier Coussy
,
IFSTTAR
,
Franc
e
.
15.
Brun
,
M.
,
Lallemand
,
A.
,
Quinson
,
J.-F.
, and
Eyraud
,
C.
,
1977
, “
A New Method for the Simultaneous Determination of the Size and the Shape of Pores: The Thermoporometry
,”
Thermochim. Acta
,
21
, pp.
59
88
.10.1016/0040-6031(77)85122-8
16.
Fabbri
,
A.
,
Fen-Chong
,
T.
, and
Coussy
,
O.
,
2006
, “
Dielectric Capacity, Liquid Water Content, and Pore Structure of Thawing-Freezing Materials
,”
Cold Reg. Sci. Technol.
,
44
, pp.
52
66
.10.1016/j.coldregions.2005.07.001
17.
Fen-Chong
,
T.
, and
Fabbri
,
A.
,
2005
, “
Freezing and Thawing Porous Media: Experimental Study With a Dielectric Capacitive Method
,”
C. R. Mec.
,
333
, pp.
425
430
.10.1016/j.crme.2005.01.007
18.
Fen-Chong
,
T.
,
Fabbri
,
A.
, and
Azouni
,
A.
,
2006
, “
Transient Freezing-Thawing Phenomena in Water-Filled Cohesive Porous Materials
,”
Cold Reg. Sci. Technol.
,
46
, pp.
12
26
.10.1016/j.coldregions.2006.04.001
19.
Fabbri
,
A.
,
Fen-Chong
,
T.
,
Azouni
,
A.
, and
Thimus
,
J.-F.
,
2008
, “
Investigation of Water to Ice Phase Change in Porous Media by Ultrasonic and Dielectric Measurements
,”
J. Cold Reg. Eng.
,
23
, pp.
69
90
.10.1061/(ASCE)0887-381X(2009)23:2(69)
20.
Petrov
,
O. V.
, and
Furo
,
I.
,
2009
, “
NMR Cryoporometry: Principles, Applications and Potential
,”
Prog. Nucl. Magn. Reson. Spectrosc.
,
54
, pp.
97
122
.10.1016/j.pnmrs.2008.06.001
21.
Zeng
,
Q.
,
Fen-Chong
,
T.
,
Dangla
,
P.
, and
Li
,
K.
,
2011
, “
A Study of Freezing Behaviour of Cementitious Materials by Poromechanical Approach
,”
Int. J. Solids Struct.
,
48
, pp.
3267
3273
.10.1016/j.ijsolstr.2011.07.018
22.
Papadakis
,
G.
,
1999
, “
Effect of Fly Ash on Portland Cement Systems. Part 1. Low-Calcium Fly Ash
,”
Cem. Concr. Res.
,
29
, pp.
1727
1736
.10.1016/S0008-8846(99)00153-2
23.
Nguyen
,
M. D.
,
2009
, “
Modelling Coupling Between Hydration and Desiccation of Cementitious Materials After Removal of Formworks. Study of the Degradation of Transfer Properties
,” Ph.D. thesis,
Université de Marne-la-Vallée
,
France
(in French).
24.
Bernard
,
O.
,
Ulm
,
F.-J.
, and
Lemarchand
,
E.
,
2003
, “
A Multiscale Micromechanics-Hydration Model for the Early-Age Elastic Properties of Cement-Based Materials
,”
Cem. Concr. Res.
,
33
, pp.
1293
1309
.10.1016/S0008-8846(03)00039-5
25.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
,
7
, pp.
1103
1112
.10.1063/1.1750380
26.
Fuji
,
K.
, and
Kondo
,
W.
,
1974
, “
Kinetics of the Hydration of Tricalcium Silicate
,”
J. Am. Ceram. Soc.
,
57
, pp.
492
502
.10.1111/j.1151-2916.1974.tb11400.x
27.
Lothenbach
,
B.
, and
Winnefeld
,
F.
, “
Thermodynamic Modelling of the Hydration of Portland Cement
,”
Cem. Concr. Res.
,
36
(
2
), pp.
209
226
.10.1016/j.cemconres.2005.03.001
28.
Nemecek
,
J.
,
Smilauer
,
V.
, and
Kopecky
,
L.
,
2011
, “
Nanoindentation Characteristics of Alkali-Activated Aluminosilicate Materials
,”
Cem. Concr. Compos.
,
33
, pp.
163
170
.10.1016/j.cemconcomp.2010.10.005
29.
Coussy
,
O.
, and
Fen-Chong
,
T.
,
2005
, “
Crystallization, Pore Relaxation and Micro-Cryosuction in Cohesive Porous Materials
,”
C. R. Mec.
,
333
, pp.
507
512
.10.1016/j.crme.2005.01.005
30.
Fen-Chong
,
T.
, and
Bouteille
,
S.
,
2012
,
Durabilité aux Températures Froides des Bétons Durcis
. Transformations Physico-Chimiques dans les Matériaux du Génie Civil: Conséquences Mécaniques: Microstructurales,”
P.
Dangla
(Coord.), Collection ERLPC SI 18, IFSTTAR, avril 2012.
31.
Coussy
,
O.
, and
Monteiro
,
P. J. M.
,
2007
, “
Unsaturated Poroelasticity for Crystallization in Pores
,”
Comput. Geotech.
,
34
, pp.
279
290
.10.1016/j.compgeo.2007.02.007
32.
Coussy
,
O.
, and
Monteiro
,
P. J. M.
,
2009
, “
Errata to “Poroelastic Model for Concrete Exposed to Freezing Temperatures [Cem. Concr. Res. 38(2008) pp. 40–48]
,”
Cem. Concr. Res.
,
39
, pp.
371
372
.10.1016/j.cemconres.2009.01.009
33.
Piltner
,
R.
, and
Monteiro
,
P. J. M.
,
2000
, “
Stress Analysis of Expansive Reactions in Concrete
,”
Cem. Concr. Res.
,
30
, pp.
843
848
.10.1016/S0008-8846(00)00266-0
34.
Monteiro
,
P. J. M.
,
Coussy
,
O.
, and
Silva
,
D. A.
,
2006
, “
Effect of Cryo-Suction and Air Void Transition Layer on Hydraulic Pressure of Freezing Concrete
,”
ACI Mater. J.
,
103
, pp.
136
140
.
You do not currently have access to this content.