Shales, clays, hydrogels, and tissues swell and shrink under changing osmotic conditions, which may lead to failure. The relationship between the presence of cracks and fluid flow has had little attention. The relationship between failure and osmotic conditions has had even less attention. The aim of this research is to study the effect of osmotic conditions on propagating discontinuities under different types of loads for saturated ionized porous media using the finite element method (FEM). Discontinuous functions are introduced in the shape functions of the FEM by partition of unity method, independently of the underlying mesh. Damage ahead of the crack-tip is introduced by a cohesive zone model. Tensile loading of a crack in an osmoelastic medium results in opening of the crack and high pressure gradients between the crack and the formation. The fluid flow in the crack is approximated by Couette flow. Results show that failure behavior depends highly on the load, permeability, (osmotic) prestress and the stiffness of the material. In some cases it is seen that when the crack propagation initiates, fluid is attracted to the crack-tip from the crack rather than from the surrounding medium causing the crack to close. The results show reasonable mesh-independent crack propagation for materials with a high stiffness. Stepwise crack propagation through the medium is seen due to consolidation, i.e., crack propagation alternates with pauses in which the fluid redistributes. This physical phenomenon challenges the numerical scheme. Furthermore, propagation is shown to depend on the osmotic prestressing of the medium. This mechanism may explain the tears observed in intervertebral disks as degeneration progresses.

References

References
1.
Urban
,
J. P.
, and
Roberts
,
S.
,
2003
, “
Degeneration of the Intervertebral Disc
,”
Arthritis Res. Ther.
,
5
(
3
), pp.
120
130
.10.1186/ar629
2.
Adams
,
M. A.
, and
Roughley
,
P. J.
,
2006
, “
What Is Intervertebral Disc Degeneration, and What Causes It?
Spine
,
31
(
18
), pp.
2151
2161
.10.1097/01.brs.0000231761.73859.2c
3.
Hutton
,
W. C.
,
Ganey
,
T. M.
,
Elmer
,
W. A.
,
Kozlowska
,
E.
,
Ugbo
,
J. L.
,
Doh
,
E. S.
, and T. E.
Whitesides
,
J.
,
2000
, “
Does Long-Term Compressive Loading on the Intervertebral Disc Cause Degeneration?
Spine
,
25
(
23
), pp.
2993
3004
.10.1097/00007632-200012010-00006
4.
Simunic
,
D. I.
,
Broom
,
N. D.
, and
Robertson
,
P. A.
,
2001
. “
Biomechanical Factors Influencing Nuclear Disruption of the Intervertebral Disc,
Spine
,
26
(
11
), pp.
1223
1230
.10.1097/00007632-200106010-00010
5.
Simunic
,
D. I.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2004
, “
Mechanically Induced Disruption of the Healthy Bovine Intervertebral Disc
,”
Spine
,
29
(
9
), pp.
972
978
.10.1097/00007632-200405010-00005
6.
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force
,”
Clin. Biomech.
,
16
(
1
), pp.
28
37
.10.1016/S0268-0033(00)00063-2
7.
Yu
,
C. Y.
,
Tsai
,
K. H.
,
Hu
,
W. P.
,
Lin
,
R. M.
,
Song
,
H. W.
, and
Chang
,
G. L.
,
2003
, “
Geometric and Morphological Changes of the Intervertebral Disc Under Fatigue Testing
,,”
Clin. Biomech.
,
18
(
6
), pp.
S3
S9
.10.1016/S0268-0033(03)00078-0
8.
Battie
,
M. C.
,
Videman
,
T.
, and
Parent
,
E.
,
2004
, “
Lumbar Disc Degeneration: Epidemiology and Genetic Influences
,”
Spine
,
29
(
23
), pp.
2679
2690
.10.1097/01.brs.0000146457.83240.eb
9.
Videman
,
T.
, and
Battie
,
M. C.
,
1999
, “
The Influence of Occupation on Lumbar Degeneration
,”
Spine
,
24
(
11
), pp.
1164
1168
.10.1097/00007632-199906010-00020
10.
Wognum
,
S.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P.
,
2006
, “
Influence of Osmotic Pressure Changes on the Opening of Existing Cracks in 2 Intervertebral Disc Models
,”
Spine
,
31
(
16
), pp.
1783
1788
.10.1097/01.brs.0000227267.42924.bb
11.
Huang
,
N. C.
, and
Russell
,
S. G.
,
1985
, “
Hydraulic Fracturing of a Saturated Porous Medium—I: General Theory
,”
Theoret. Appl. Fract. Mech.
,
4
(
3
), pp.
201
213
.10.1016/0167-8442(85)90005-9
12.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys. Space Phys.
,
14
(
2
), pp.
227
241
.10.1029/RG014i002p00227
13.
Detournay
,
E.
, and
Cheng
,
A. H. D.
,
1991
, “
Plane Strain Analysis of a Stationary Hydraulic Fracture in a Poroelastic Medium
,”
Int. J. Solids Struct.
,
27
(
13
), pp.
1645
1662
.10.1016/0020-7683(91)90067-P
14.
Emerman
,
S. H.
,
Turcotte
,
D. L.
, and
Spence
,
D. A.
,
1986
, “
Transport of Magma and Hydrothermal Solutions by Laminar and Turbulent Fluid Fracture
,”
Phys. Earth Planet. Inter.
,
41
(
4
), pp.
249
259
.10.1016/0031-9201(86)90004-X
15.
Boone
,
T. J.
,
Ingraffea
,
A. R.
, and
Roegiers
,
J. C.
,
1991
, “
Simulation of Hydraulic Fracture Propagation in Poroelastic Rock With Application to Stress Measurement Techniques
,”
International J. Rock Mech.
,
28
(
1
), pp.
1
14
.10.1016/0148-9062(91)93228-X
16.
Detournay
,
E.
, and
Garagash
,
D. I.
,
2003
The Near-Tip Region of a Fluid-Driven Fracture Propagating in a Permeable Elastic Solid
,”
J. Fluid Mech.
,
494
, pp.
1
32
.10.1017/S0022112003005275
17.
Kfoury
,
M.
,
Ababou
,
R.
,
Noetinger
,
B.
, and
Quintard
,
M.
,
2006
, “
Upscaling Fractured Heterogeneous Media: Permeability and Mass Exchange Coefficient
,”
ASME J. Appl. Mech.
,
73
(
1
), pp.
41
46
.10.1115/1.1991864
18.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F. J.
,
2006
, “
A Micromechanical Analysis of Damage Propagation in Fluid-Saturated Cracked Media
,”
Comptes Rendus Mecanique
,
334
(
7
), pp.
440
446
.10.1016/j.crme.2006.05.007
19.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solid.
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
20.
Barenblatt
,
G. I.
,
1962
. “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
, (
7
), pp.
55
129
.10.1016/S0065-2156(08)70121-2
21.
Simoni
,
L.
, and
Secchi
,
S.
,
2003
, “
Cohesive Fracture Mechanics for a Multi-Phase Porous Medium
,”.
Eng. Computat.
,
20
(
5–6
), pp.
675
698
.10.1108/02644400310488817
22.
Schrefler
,
B. A.
,
Secchi
,
S.
, and
Simoni
,
L.
,
2006
, “
On Adaptive Refinement Techniques in Multi-Field Problems Including Cohesive Fracture
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
4–6
), pp.
444
461
.10.1016/j.cma.2004.10.014
23.
Secchi
,
S.
,
Simoni
,
L.
, and
Schrefler
,
B. A.
,
2007
, “
Mesh Adaptation and Transfer Schemes for Discrete Fracture Propagation in Porous Materials
,”
Int. J. Numer. Anal. Meth. Geomech.
,
31
(
2
), pp.
331
345
.10.1002/nag.581
24.
Babuska
,
I.
, and
Melenk
,
J. M.
,
1997
, “
The Partition of Unity Method
,”
Int. J. Numer. Meth. Eng.
,
40
(
4
), pp.
727
758
.10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
25.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Meth. Eng.
,
45
(
5
), pp.
601
620
.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
26.
Wells
,
G. N.
,
2001
, “
Discontinuous Modelling of Strain Localisation and Failure
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
27.
Moes
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
813
833
.10.1016/S0013-7944(01)00128-X
28.
Remmers
,
J. J. C.
,
de Borst
,
R.
, and
Needleman
,
A.
,
2003
, “
A Cohesive Segments Method for the Simulation of Crack Growth
,”
Comput. Mech.
,
31
(
1–2
), pp.
69
77
.10.1007/s00466-002-0394-z
29.
Larsson
,
R.
,
Runesson
,
K.
, and
Ottosen
,
N. S.
,
1993
, “
Discontinuous Displacement Approximation for Capturing Plastic Localization
,”
Int. J. Numer. Meth. Eng.
,
36
(
12
), pp.
2087
2105
.10.1002/nme.1620361209
30.
Larsson
,
J.
, and
Larsson
,
R.
,
2000
, “
Localization Analysis of a Fluid-Saturated Elastoplastic Porous Medium Using Regularized Discontinuities
,”
Mech. Co.-Frict. Mater.
,
5
(
7
), pp.
565
582
.10.1002/1099-1484(200010)5:7<565::AID-CFM107>3.0.CO;2-W
31.
Armero
,
F.
, and
Callari
,
C.
,
1999
, “
An Analysis of Strong Discontinuities in a Saturated Poro-Plastic Solid
,”
Int. J. Numer. Meth. Eng.
,
46
(
10
), pp.
1673
1698
.10.1002/(SICI)1097-0207(19991210)46:10<1673::AID-NME719>3.0.CO;2-S
32.
Roels
,
S.
,
Moonen
,
P.
,
Proft
,
K. D.
, and
Carmeliet
,
J.
,
2006
, “
A Coupled Discrete-Continuum Approach to Simulate Moisture Effects on Damage Processes in Porous Materials
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
52
), pp.
7139
7153
.10.1016/j.cma.2005.05.051
33.
Al-Khoury
,
R.
, and
Sluys
,
L. J.
,
2007
, “
A Computational Model for Fracturing Porous Media
,”
Int. J. Numer. Meth. Eng.
,
70
(
4
), pp.
423
444
.10.1002/nme.1886
34.
Rethore
,
J.
,
de Borst
,
R.
, and
Abellan
,
M. A.
,
2007
, “
A Two-Scale Approach for Fluid Flow in Fractured Porous Media
,”
Int. J. Numer. Meth. Eng.
,
71
(
7
), pp.
780
800
.10.1002/nme.1962
35.
de Borst
,
R.
,
2008
, “
Challenges in Computational Materials Science: Multiple Scales, Multi-Physics and Evolving Discontinuities
,”
Comput. Mater. Sci.
,
43
(
1
), pp.
1
15
.10.1016/j.commatsci.2007.07.022
36.
Lanir
,
Y.
,
1987
, “
Biorheology and Fluid Flux in Swelling Tissues. 1. Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
,
24
(
2
), pp.
173
187
.
37.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
38.
Vermeer
,
P. A.
, and
Verruijt
,
A.
,
1981
, “
An Accuracy Condition for Consolidation by Finite Elements
,”
Int. J. Numer. Anal. Meth. Geomech.
,
5
(
1
), pp.
1
14
.10.1002/nag.1610050103
39.
Remmers
,
J. J. C.
,
2006
, “
Discontinuities in Materials and Structures. A Unifying Computational Approach
,” Ph.D. thesis, University of Technology Delft, The Netherlands.
40.
Remmers
,
J. J. C.
,
de Borst
,
R.
, and
Needleman
,
A.
,
2008
, “
The Simulation of Dynamic Crack Propagation Using the Cohesive Segments Method
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
70
92
.10.1016/j.jmps.2007.08.003
41.
Kraaijeveld
,
F.
,
Huyghe
,
J. M.
,
Remmers
,
J. J. C.
,
de Borst
,
R.
, and
Baaijens
,
F. P. T.
,
2013
, “
Shear Fracture in Osmoelastic Saturated Porous Media: A Mesh-Independent Model
,”
Eng. Fract. Mech.
(submitted).
42.
Zienkiewicz
,
O. C.
,
Qu
,
S.
,
Taylor
,
R. L.
, and
Nakazawa
,
S.
,
1986
, “
The Patch Test for Mixed Formulations
,”
Int. J. Numer. Meth. Eng.
,
23
(
10
), pp.
1873
1883
.10.1002/nme.1620231007
You do not currently have access to this content.