The relationship between the macro- and microvelocity fields in a poroelastic representative volume element (RVE) has not being fully investigated. This relationship is considered to be a function of the tortuosity: a quantitative measure of the effect of the deviation of the pore fluid streamlines from straight (not tortuous) paths in fluid-saturated porous media. There are different expressions for tortuosity based on the deviation from straight pores, harmonic wave excitation, or from a kinetic energy loss analysis. The objective of the work presented is to determine the best expression for tortuosity of a multiply interconnected open pore architecture in an anisotropic porous media. The procedures for averaging the pore microvelocity over the RVE of poroelastic media by Coussy and by Biot were reviewed as part of this study, and the significant connection between these two procedures was established. Success was achieved in identifying the Coussy kinetic energy loss in the pore fluid approach as the most attractive expression for the tortuosity of porous media based on pore fluid viscosity, porosity, and the pore architecture. The fabric tensor, a 3D measure of the architecture of pore structure, was introduced in the expression of the tortuosity tensor for anisotropic porous media. Practical considerations for the measurement of the key parameters in the models of Coussy and Biot are discussed. In this study, we used cancellous bone as an example of interconnected pores and as a motivator for this study, but the results achieved are much more general and have a far broader application than just to cancellous bone.

References

References
1.
Coussy
,
O.
,
1995
,
Mechanics of Porous Continua
,
Wiley
,
New York
, Chap. 2.
2.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
, pp.
1482
1498
.10.1063/1.1728759
3.
Parfitt
,
A. M.
,
Mathews
,
C. H. E.
,
Villanueva
,
A. R.
,
Kleerekoper
,
M.
,
Frame
,
B.
, and
Rao
,
D. S.
,
1983
, “
Relationships Between Surface, Volume, and Thickness of Iliac Trabecular Bone in Aging and in Osteoporosis. Implications for the Microanatomic and Cellular Mechanisms of Bone Loss
,”
J. Clin. Invest
,
72
, pp.
1396
1409
.10.1172/JCI111096
4.
Rehman
,
M. T.
,
Hoyland
,
J. A.
,
Denton
,
J.
, and
Freemont
,
A. J.
,
1994
, “
Age Related Histomorphometric Changes in Bone in Normal British Men and Women
,”
J. Clin. Pathol.
,
47
(
6
), pp.
529
534
.10.1136/jcp.47.6.529
5.
Hildebrand
,
T.
,
Laib
,
A.
,
Müller
,
R.
,
Dequeker
,
J.
, and
Rüegsegger
,
P.
,
1999
, “
Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data From Spine, Femur, Iliac Crest, and Calcaneus
,”
J. Bone Miner. Res.
,
14
, pp.
1167
1174
.10.1359/jbmr.1999.14.7.1167
6.
Glorieux
,
F. H.
,
Travers
,
R.
,
Taylor
,
A.
,
Bowen
,
J. R.
,
Rauch
,
F.
,
Norman
,
M.
, and
Parfitt
,
A. M.
,
2000
, “
Normative Data for Iliac Bone Histomorphometry in Growing Children
,”
Bone
,
26
(
2
), pp.
103
109
.10.1016/S8756-3282(99)00257-4
7.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Dover
,
New York
, Chap. 4.
8.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.10.1063/1.1712886
9.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, pp.
168
178
.10.1121/1.1908239
10.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, pp.
179
191
.10.1121/1.1908241
11.
Biot
,
M. A.
,
1962
, “
Generalized Theory of Acoustic Propagation in Porous Dissipative Media
,”
J. Acoust. Soc. Am.
,
34
, pp.
1254
1264
.10.1121/1.1918315
12.
Carman
,
P. C.
,
1937
, “
Fluid Flow Through Granular Beds
,”
Trans. Inst. Chem. Eng.
,
15
, pp.
150
156
.10.1016/S0263-8762(97)80003-2
13.
Norris
,
A. N.
,
1986
, “
On the Viscoelastic Operator in Biot's Equations of Poroelasticity
,”
J. Wave-Mater. Interact.
,
1
, pp.
365
380
, http://rci.rutgers.edu/∼norris/papers.html
14.
Costa
,
U. M. S.
,
Andrade
,
J. S.
,
Makse
,
H. A.
, and
Stanley
,
H. E.
,
1999
, “
Inertial Effects on Fluid Flow Through Disordered Porous Media
,”
Phys. Rev. Lett.
,
82
, pp.
5249
5252
.10.1103/PhysRevLett.82.5249
15.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
,
1987
, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid Mech.
,
176
, pp.
379
402
.10.1017/S0022112087000727
16.
Perrot
,
C.
,
Chevillotte
,
F.
,
Panneton
,
R.
,
Allard
,
J. F.
, and
Lafarge
,
D.
,
2008
, “
On the Dynamic Viscous Permeability Tensor Symmetry
,”
J. Acoust. Soc. Am. Express Lett.
,
124
, pp.
210
217
.10.1121/1.2968300
17.
Darcy
,
H.
,
1856
,
Les Fontaines Publiques de la Ville de Dijon
,
Dalmont
,
Paris
.
18.
Hilliard
,
J. E.
,
1967
, “
Determination of Structural Anisotropy
,”
Stereology—Proc. 2nd Int. Congress for Stereology, Chicago, 1967
,
Springer
,
Berlin
, p.
219
.
19.
Whitehouse
,
W. J.
,
1974
, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
,
101
, pp.
153
168
.10.1111/j.1365-2818.1974.tb03878.x
20.
Whitehouse
,
W. J.
and
Dyson
,
E. D.
,
1974
, “
Scanning Electron Micro scope Studies of Trabecular Bone in The Proximal End of the Human Femur
,”
J. Anat.
,
118
, pp.
417
444
, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231543/
21.
Oda
,
M.
,
1976
, “
Fabrics and Their Effects on the Deformation Behaviors of Sand
,”
Special Report, Dept. of Foundation Engr., Saitama University
,
Saitama City, Japan
, p. 59.
22.
Oda
,
M.
,
Konishi
,
J.
, and
Nemat-Nasser
S.
,
1980
, “
Some Experimentally Based Fundamental Results on the Mechanical Behavior of Granular Materials
,”
Geotechnique
,
30
, pp.
479
495
.10.1680/geot.1980.30.4.479
23.
Oda
,
M.
,
Nemat-Nasser
,
S.
, and
Konishi
,
J.
,
1985
, “
Stress Induced Anisotropy in Granular Masses
,”
Soils Found
.
25
, pp. 85–97
.
10.3208/sandf1972.25.3_85
24.
Cowin
,
S. C.
, and
Satake
,
M.
, eds.,
1978
,
Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials
,
Gakujutsu Bunken Fukyu-Kai
,
Tokyo
.
25.
Satake
,
M.
,
1982
, “
Fabric Tensor in Granular Materials
,”
Deformation and Failure of Granular Materials
,
P. A.
Vermeer
and
H. J.
Lugar
, eds.,
Balkema
,
Rotterdam
, pp.
63
68
.
26.
Kanatani
,
K.
,
1983
, “
Characterization of Structural Anisotropy by Fabric Tensors and Their Statistical Test
,”
J. Jpn. Soil Mech. Found. Eng.
,
23
, pp.
171
177
.10.3208/sandf1972.23.4_171
27.
Kanatani
,
K.
,
1984
, “
Distribution of Directional Data and Fabric Tensors
,”
Int. J. Eng. Sci.
,
22
, pp.
149
164
.10.1016/0020-7225(84)90055-7
28.
Kanatani
,
K.
,
1984
, “
Stereological Determination of Structural Anisotropy
,”
Int. J. Eng. Sci.
,
22
, pp.
531
546
.10.1016/0020-7225(84)90055-7
29.
Kanatani
,
K.
,
1985
, “
Procedures for Stereological Estimation of Structural Anisotropy
,”
Int. J. Eng. Sci.
,
23
(
5
), pp.
587
598
.10.1016/0020-7225(85)90067-9
30.
Harrigan
,
T. P.
,
Jasty
,
M.
,
Mann
,
R. W.
, and
Harris
,
W. H.
,
1988
, “
Limitations of the Continuum Assumption in Cancellous Bone
,”
J. Biomech.
,
21
, pp.
269
275
.10.1016/0021-9290(88)90257-6
31.
Odgaard
,
A.
,
1997
, “
Three-Dimensional Methods for Quantification of Cancellous Bone Architecture
,”
Bone
,
20
, pp.
315
328
.10.1016/S8756-3282(97)00007-0
32.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone are Closely Related
,”
J. Biomech.
,
30
, pp.
487
495
.10.1016/S0021-9290(96)00177-7
33.
Odgaard
,
A.
,
2001
, “
Quantification of Cancellous Bone Architecture
,”
Bone Mechanics Handbook
,
S. C.
Cowin
, ed.,
CRC
,
Boca Raton, FL
.
34.
Matsuura
,
M.
,
Eckstein
,
F.
,
Lochmüller
,
E. M.
, and
Zysset
,
P. K.
,
2008
, “
The Role of Fabric in the Quasi-Static Compressive Mechanical Properties of Human Trabecular Bone From Various Anatomical Locations
,”
Biomech. Model. Mechanobiol.
,
7
, pp.
27
42
.10.1007/s10237-006-0073-7
35.
Cowin
,
S. C.
,
1985
, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
, pp.
137
147
.10.1016/0167-6636(85)90012-2
36.
Cowin
,
S. C.
,
2004
, “
Anisotropic Poroelasticity: Fabric Tensor Formulation
,”
Mech. Mater.
,
36
, pp.
666
677
.10.1016/j.mechmat.2003.05.001
37.
Cardoso
,
L.
, and
Cowin
,
S. C.
,
2011
, “
Fabric Dependence of Quasi-Waves in Anisotropic Porous Media
,”
J. Acoust. Soc. Am.
,
129
, pp.
3302
3316
.10.1121/1.3557032
38.
Cowin
,
S. C.
, and
Cardoso
,
L.
,
2011
, “
Fabric Dependence of Poroelastic Wave Propagation in Anisotropic Porous Media
,”
Biomech. Model. Mechanobiol.
,
10
, pp.
39
65
.10.1007/s10237-010-0217-7
You do not currently have access to this content.