There are lots of ceramic geological and biological materials whose microscopic load carrying behavior is not dominated by bending of structural units, but by the three-dimensional interaction of disorderedly arranged single crystals. A particularly interesting solution to capture this so-called polycrystalline behavior has emerged in the form of self-consistent homogenization methods based on an infinite amount of nonspherical (needle or disk-shaped) solid crystal phases and one spherical pore phase. Based on eigenstressed matrix-inclusion problems, together with the concentration and influence tensor concept, we arrive at the following results: Young’s modulus and the poroelastic Biot modulus of the porous polycrystal scale linearly with the Young’s modulus of the single crystals, the former independently of the Poisson’s ratio of the single crystals. Biot coefficients are independent of the single crystals’ Young’s modulus. The uniaxial strength of a pore pressure-free porous polycrystal, as well as the blasting pore pressure of a macroscopic stress-free polycrystal, scale linearly with the tensile strength of the single crystals, independently of all other elastic and strength properties of the single crystals. This is confirmed by experiments on a wide range of bio- and geomaterials, and it is of great interest for numerical simulations of structures built up by such polycrystals.

References

References
1.
Coble
,
R.
, and
Kingery
,
W.
,
1956
, “
Effect of Porosity on Physical Properties of Alumina
,”
J. Am. Ceram. Soc.
,
39
, pp.
377
385
.10.1111/j.1151-2916.1956.tb15608.x
2.
McElhaney
,
J.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
, pp.
1231
1236
.
3.
Carter
,
D.
, and
Hayes
,
W.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg.
,
59-A
(
7
), pp.
954
962
.
4.
Rice
,
J.
,
Cowin
,
S.
, and
Bowman
,
J.
,
1988
, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
,
21
, pp.
155
168
.10.1016/0021-9290(88)90008-5
5.
Gibson
,
L.
, and
Ashby
,
M.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Solids
,”
Proc. R. Soc. London, Ser. A
,
382
, pp.
43
59
.10.1098/rspa.1982.0088
6.
Gibson
,
L.
,
1985
, “
The Mechanical Behavior of Cancellous Bone
,”
J. Biomech.
,
18
, pp.
317
328
.10.1016/0021-9290(85)90287-8
7.
Gibson
,
L.
, and
Ashby
,
M.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
8.
O’Brien
,
F.
,
Harley
,
B.
,
Yannas
,
I.
, and
Gibson
,
L.
,
2005
, “
The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds
,”
Biomaterials
,
26
, pp.
433
441
.10.1016/j.biomaterials.2004.02.052
9.
Meille
,
S.
, and
Garboczi
,
E.
,
2001
, “
Linear Elastic Properties of 2D and 3D Models of Porous Materials Made From Elongated Objects
,”
Modell. Simul. Mater. Sci. Eng.
,
9
, pp.
371
390
.10.1088/0965-0393/9/5/303
10.
Jakobsen
,
M.
,
Hudson
,
J.
,
Minshull
,
T.
, and
Singh
,
S.
,
2000
, “
Elastic Properties of Hydrate-Bearing Sediments Using Effective Medium Theory
,”
J. Geophys. Res.
,
105
, pp.
561
577
.10.1029/1999JB900190
11.
Fritsch
,
A.
,
Dormieux
,
L.
, and
Hellmich
,
C.
,
2006
, “
Porous Polycrystals Built Up by Uniformly and Axisymmetrically Oriented Needles: Homogenization of Elastic Properties
,”
C. R. Mec.
,
334
(
3
), pp.
151
157
.10.1016/j.crme.2006.01.008
12.
Fritsch
,
A.
,
Dormieux
,
L.
,
Hellmich
,
C.
, and
Sanahuja
,
J.
,
2009
, “
Mechanical Behaviour of Hydroxyapatite Biomaterials: An Experimentally Validated Micromechanical Model for Elasticity and Strength
,”
J. Biomed. Mater. Res Part A
,
88A
, pp.
149
161
.10.1002/jbm.a.31727
13.
Sanahuja
,
J.
,
Dormieux
,
L.
,
Meille
,
S.
,
Hellmich
,
C.
, and
Fritsch
,
A.
,
2010
, “
Micromechanical Explanation of Elasticity and Strength of Gypsum: From Elongated Anisotropic Crystals to Isotropic Porous Polycrystals
,”
J. Eng. Mech.
,
136
, pp.
239
253
.10.1061/(ASCE)EM.1943-7889.0000072
14.
Fritsch
,
A.
,
Hellmich
,
C.
, and
Dormieux
,
L.
,
2010
, “
The Role of Disc-Type Crystal Shape for Micromechanical Predictions of Elasticity and Strength of Hydroxyapatite Biomaterials
,”
Philos. Trans. R. Soc. London, Ser. A
,
368
, pp.
1913
1935
.10.1098/rsta.2010.0005
15.
Eshelby
,
J.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.10.1098/rspa.1957.0133
16.
Laws
,
N.
,
1977
, “
The Determination of Stress and Strain Concentrations at an Ellipsoidal Inclusion in an Anisotropicmaterial
,”
J. Elast.
,
7
(
1
), pp.
91
97
.10.1007/BF00041133
17.
Simpleware
,
2008
,
“ScanIP, + ScanFE and + ScanCAD Tutorial Guide,” Exeter, UK, http://www.simpleware.com
18.
Salje
,
E.
,
Koppensteiner
,
J.
,
Schranz
,
W.
, and
Fritsch
,
E.
,
2010
, “
Elastic Instabilities in Dry, Mesoporous Minerals and Their Relevance to Geological Applications
,”
Miner. Mag.
,
74
, pp.
341
350
.10.1180/minmag.2010.074.2.341
19.
Dvorak
,
G.
,
1992
, “
Transformation Field Analysis of Inelastic Composite Materials
,”
Proc. R. Soc. London, Ser. A
,
437
, pp.
311
327
.10.1098/rspa.1992.0063
20.
Dvorak
,
G.
, and
Benveniste
,
Y.
,
1992
, “
On the Transformation Strains and Uniform Fields in Multiphase Elastic Media
,”
Proc. R. Soc. London, Ser. A
,
437
, pp.
291
310
.10.1098/rspa.1992.0062
21.
Pichler
,
B.
, and
Hellmich
,
C.
,
2010
, “
Estimation of Influence Tensors for Eigenstressed Multiphase Elastic Media With Nonaligned Inclusion Phases of Arbitrary Ellipsoidal Shape
,”
J. Eng. Mech.
,
136
, pp.
1043
1053
.10.1061/(ASCE)EM.1943-7889.0000138
22.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F.-J.
,
2006
,
Microporomechanics
,
Wiley
,
New York
.
23.
Zaoui
,
A.
,
2002
, “
Continuum Micromechanics: Survey
,”
J. Eng. Mech.
,
128
(
8
), pp.
808
816
.10.1061/(ASCE)0733-9399(2002)128:8(808)
24.
De With
,
G.
,
van Dijk
,
H.
,
Hattu
,
N.
, and
Prijs
,
K.
,
1981
, “
Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxy Apatite
,”
J. Mater. Sci.
,
16
, pp.
1592
1598
.10.1007/BF02396876
25.
Gilmore
,
R.
, and
Katz
,
J.
,
1982
, “
Elastic Properties of Apatites
,”
J Mater. Sci.
,
17
, pp.
1131
1141
.10.1007/BF00543533
26.
Liu
,
D.-M.
,
1998
, “
Preparation and Characterization of Porous Hydroxyapatite Bioceramic via a Slip-Casting Route
,”
Ceram. Int.
,
24
, pp.
441
446
.10.1016/S0272-8842(97)00033-3
27.
Charrière
,
E.
,
Terrazzoni
,
S.
,
Pittet
,
C.
,
Mordasini
,
P.
,
Dutoit
,
M.
,
Lemaître
,
J.
, and
Zysset
,
P.
,
2001
, “
Mechanical Characterization of Brushite and Hydroxyapatite Cements
,”
Biomaterials
,
22
, pp.
2937
2945
.10.1016/S0142-9612(01)00041-2
28.
Malasoma
,
A.
,
Fritsch
,
A.
,
Kohlhauser
,
C.
,
Brynk
,
T.
,
Vitale-Brovarone
,
C.
,
Pakiela
,
Z.
,
Eberhardsteiner
,
J.
, and
Hellmich
,
C.
,
2008
, “
Micromechanics of Bioresorbable Porous CEL2 Glass-Ceramic Scaffolds for Bone Tissue Engineering
,”
Adv. Appl. Ceram.
,
107
, pp.
277
286
.10.1179/174367508X306488
29.
Ali
,
M.
, and
Singh
,
B.
,
1975
, “
The Effect of Porosity on the Properties of Glass Fibre-Reinforced Gypsum Plaster
,”
J. Mater. Sci.
,
10
, pp.
1920
1928
.10.1007/BF00754481
30.
Phani
,
K.
,
1986
, “
Young’s Modulus-Porosity Relation in Gypsum Systems
,”
Am. Ceram. Soc. Bull.
,
65
, pp.
1584
1586
.
31.
Tazawa
,
E.
,
1998
, “
Effect of Self Stress on Flexural Strength of Gypsum-Polymer Composites
,”
Adv. Cem. Based Mater.
,
7
, pp.
1
7
.10.1016/S1065-7355(97)00010-2
32.
Meille
,
S.
,
2001
, “
Etude du comportement mécanique du plâtre pris en relation avec sa microstructure (Study of the Mechanical Behaviour of Gypsum With Regard to its Microstructure)
,” Ph.D. thesis, INSA Lyon, Lyon, France (in French).
33.
Colak
,
M.
,
2006
, “
Physical and Mechanical Properties of Polymer-Plaster Composites
,”
Mater. Lett.
,
60
, pp.
1977
1982
.10.1016/j.matlet.2005.12.062
34.
Craciun
,
F.
,
Galassi
,
C.
,
Roncari
,
E.
,
Filippi
,
A.
, and
Guidarelli
,
G.
,
1998
, “
Electro-Elastic Properties of Porous Piezoelectric Ceramics Obtained by Tape Casting
,”
Ferroelectrics
,
205
, pp.
49
67
.10.1080/00150199808228387
35.
Pabst
,
W.
,
Gregorová
,
E.
,
Tichá
,
G.
, and
Týnová
,
E.
,
2004
, “
Effective Elastic Properties of Alumina-Zirconia Composite Ceramics–Part 4. Tensile Modulus of Porous Alumina and Zirconia
,”
Ceramics-Silikáty
,
48
(
4
), pp.
165
174
.
36.
Reynaud
,
C.
,
Thévenot
,
F.
,
Chartier
,
T.
, and
Besson
,
J.-L.
,
2005
, “
Mechanical Properties and Mechanical Behaviour of SiC Dense-Porous Laminates
,”
J. Eur. Ceram. Soc.
,
25
, pp.
589
597
.10.1016/j.jeurceramsoc.2004.02.009
37.
Díaz
,
A.
, and
Hampshire
,
S.
,
2004
, “
Characterisation of Porous Silicon Nitride Materials Produced With Starch
,”
J. Eur. Ceram. Soc.
,
24
, pp.
413
419
.10.1016/S0955-2219(03)00212-7
38.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
362
.10.1016/0022-5096(63)90036-X
39.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials: A Survey
,”
J. Appl. Mech.
,
50
, pp.
481
505
.10.1115/1.3167081
40.
Suquet
,
P.
, ed.,
1997
,
Continuum Micromechanics
,
Springer
,
New York
.
41.
Katz
,
J.
, and
Ukraincik
,
K.
,
1971
, “
On the Anisotropic Elastic Properties of Hydroxyapatite
,”
J. Biomech.
,
4
, pp.
221
227
.10.1016/0021-9290(71)90007-8
42.
Kohlhauser
,
C.
,
Hellmich
,
C.
,
Vitale-Brovarone
,
C.
,
Boccaccini
,
A.
,
Rota
,
A.
, and
Eberhardsteiner
,
J.
,
2009
, “
Ultrasonic Characterisation of Porous Biomaterials Across Different Frequencies
,”
Strain
,
45
, pp.
34
44
.10.1111/j.1475-1305.2008.00417.x
43.
Pabst
,
W.
,
Gregorová
,
E.
, and
Tichá
,
G.
,
2006
, “
Elasticity of Porous Ceramics—A Critical Study of Modulusporosity Relations
,”
J. Eur. Ceram. Soc.
,
26
, pp.
1085
1097
.10.1016/j.jeurceramsoc.2005.01.041
44.
Haglund
,
J.
, and
Hunter
,
O.
,
1973
, “
Elastic Properties of Polycrystalline Monoclinic Gd2O3
,”
J. Am. Ceram. Soc.
,
56
, pp.
327
330
.10.1111/j.1151-2916.1973.tb12506.x
45.
Akao
,
M.
,
Aoki
,
H.
, and
Kato
,
K.
,
1981
, “
Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications
,”
J. Mater. Sci.
,
16
, pp.
809
812
.10.1007/BF02402799
46.
Shareef
,
M.
,
Messer
,
P.
, and
van Noort
,
R.
,
1993
, “
Fabrication, Characterization and Fracture Study of a Machinable Hydroxyapatite Ceramic
,”
Biomaterials
,
14
(
1
), pp.
69
75
.10.1016/0142-9612(93)90078-G
47.
Coussy
,
O.
,
2004
,
Poromechanics
,
Wiley
,
Chichester, NJ
.
48.
Bader
,
T.
,
Hofstetter
,
K.
,
Hellmich
,
C.
, and
Eberhardsteiner
,
J.
,
2011
, “
The Poroelastic Role of Water in Cell Walls of the Hierarchical Composite ‘Softwood’
,”
Acta Mech.
,
217
, pp.
75
100
.10.1007/s00707-010-0368-8
49.
Zaoui
,
A.
,
1997
, “
Structural Morphology and Constitutive Behavior of Microheterogeneous Materials
,”
Continuum Micromechanics
,
P.
Suquet
, ed.,
Springer
,
New York
, pp.
291
347
.
50.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials
,”
Mech. Mater.
,
6
, pp.
147
157
.10.1016/0167-6636(87)90005-6
51.
Barenblatt
,
G.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
52.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems. Illustrations of the Use of Dimensional Analysis
,”
Phys. Rev.
,
4
, pp.
345
376
.10.1103/PhysRev.4.345
53.
Salencon
,
J.
,
2001
,
Handbook of Continuum Mechanics—General Concepts. Thermoelasticity
,
Springer
,
Berlin
.
You do not currently have access to this content.