We propose a new two-scale model to compute the swelling pressure in colloidal systems with microstructure sensitive to pH changes from an outer bulk fluid in thermodynamic equilibrium with the electrolyte solution in the nanopores. The model is based on establishing the microscopic pore scale governing equations for a biphasic porous medium composed of surface charged macromolecules saturated by the aqueous electrolyte solution containing four monovalent ions (Na+,Cl-,H+,OH-). Ion exchange reactions occur at the surface of the particles leading to a pH-dependent surface charge density, giving rise to a nonlinear Neumann condition for the Poisson–Boltzmann problem for the electric double layer potential. The homogenization procedure, based on formal matched asymptotic expansions, is applied to up-scale the pore-scale model to the macroscale. Modified forms of Terzaghi's effective stress principle and mass balance of the solid phase, including a disjoining stress tensor and electrochemical compressibility, are rigorously derived from the upscaling procedure. New constitutive laws are constructed for these quantities incorporating the pH-dependency. The two-scale model is discretized by the finite element method and applied to numerically simulate a free swelling experiment induced by chemical stimulation of the external bulk solution.

References

References
1.
Parker
,
A.
, and
Rae
,
J. E.
,
2010
,
Environmental Interactions of Clays: Clays and the Environment
,
Springer
,
New York
(soft cover reprint of hardcover 1st edition,
1998
).
2.
Nelson
,
J.
and
Miller
,
D. J.
,
1997
,
Expansive Soils: Problems and Practice in Foundation and Pavement Engineering
,
Wiley-Interscience
, New York.
3.
Steinberg
,
M.
,
1998
,
Geomembranes and the Control of Expansive Soils
,
1st ed.
,
McGraw-Hill Professional
,
New York
.
4.
Nguyen
,
V. X.
and
Abousleiman
,
Y. N.
,
2010
, “
Incorporating Electrokinetic Effects in the Porochemoelastic Inclined Wellbore Formulation and Solution
,”
An. Acad. Bras. Cienc.
,
82
(
1
), pp.
195
222
.10.1590/S0001-37652010000100015
5.
Li
,
Y. C.
,
Cleall
,
P. J.
, and
Thomas
,
H. R.
,
2011
, “
Multi-Dimensional Chemo-Osmotic Consolidation of Clays
,”
Comput. Geotech.
,
38
(
4
), pp.
423
429
.10.1016/j.compgeo.2011.02.005
6.
Xiang
,
A. S.
and
McHugh
,
A. J.
,
2011
, “
A Generalized Diffusion-Dissolution Model for Drug Release From Rigid Polymer Membrane Matrices
,”
J. Membr. Sci.
,
366
(
1–2
), pp.
104
115
.10.1016/j.memsci.2010.09.052
7.
Li
,
D. M.
,
Yang
,
H. L.
, and
Emmerich
,
H.
,
2011
, “
Phase Field Model Simulations of Hydrogel Dynamics Under Chemical Stimulation
,”
Colloid Polym Sci.
,
289
(
5–6
), pp.
513
521
.10.1007/s00396-011-2381-4
8.
Lai
,
F. K.
and
Li
,
H.
,
1990
, “
Transient Modeling of the Reversible Response of the Hydrogel to the Change in the Ionic Strength of Solutions
,”
Mech. Mater.
,
43
(
6
), pp.
287
298
.10.1016/j.mechmat.2011.03.001
9.
Wallmersperger
,
T.
,
Ballhause
,
D.
,
Kroplin
,
B.
, Guenther, M., and Gerlach, G.,
2009
, “
Coupled Multi-Field Formulation in Space and Time for the Simulation of Intelligent Hydrogels
,”
J. Intell. Mater. Syst. Struct.
,
20
(
12
), pp.
1483
1492
.10.1177/1045389X09105236
10.
Mow
,
V.
and
Guo
,
X. E.
,
2002
, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Ann. Rev. Biomed. Eng.
,
4
, pp.
175
209
.10.1146/annurev.bioeng.4.110701.120309
11.
Newman
,
J.
and
Thomas-Alyea
,
K. E.
,
2004
,
Electrochemical Systems
,
3rd ed.
,
Wiley-Interscience
, New York.
12.
Achari
,
G.
,
Joshi
,
R. C.
,
Bentley
,
L. R.
, and
Chatterji
,
S.
,
1999
, “
Prediction of the Hydraulic Conductivity of Clays Using the Electric Double Layer Theory
,”
Can. Geotech. J.
,
36
, pp.
783
792
.10.1139/cgj-36-5-783
13.
Loret
,
B.
,
Hueckel
,
T.
, and
Gajo
,
A.
,
2002
, “
Chemo-Mechanical Coupling in Saturated Porous Media: Elastic-Plastic Behavior of Homo-Ionic Expansive Clays
,”
Int. J. Solids Struct.
,
39
, pp.
2773
2806
.10.1016/S0020-7683(02)00151-8
14.
Sherwood
,
J. D.
,
1994
, “
A Model for the Flow of Water and Ions Into Swelling Shale
,”
Langmuir
,
10
, pp.
2480
2486
.10.1021/la00019a075
15.
Low
,
P. F.
,
1987
, “
Structural Component of the Swelling Pressure of Clays
,”
Langmuir
,
3
, pp.
18
25
.10.1021/la00073a004
16.
Low
,
P. F.
,
1994
, “
The Clay/Water Interface and its Role in the Environment
,”
Prog. Colloid Polym. Sci.
,
95
, pp.
98
107
.10.1007/BFb0115697
17.
Derjaguin
,
B. V.
,
Churaev
,
N. V.
, and
Muller
,
V. M.
,
1987
,
Surface Forces
,
Plenum
,
New York
.
18.
Israelachvili
,
J.
,
1991
,
Intermolecular and Surface Forces
,
Academic
,
New York
.
19.
Hunter
,
R. J.
,
1994
,
Introduction to Modern Colloid Science
,
Oxford University Press
,
New York
.
20.
Van Olphen
, H.,
1977
,
An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists
,
Wiley
,
New York
.
21.
Mitchell
,
J. K.
,
1993
,
Fundamentals of Soil Behaviour
,
2nd ed.
,
John Wiley and Sons
,
New York
.
22.
Guimaraes
,
L. D.
,
Gens
,
A.
, and
Olivella
,
S.
,
2007
, “
Coupled Thermo-Hydro-Mechanical and Chemical Analysis of Expansive Clay Subjected to Heating and Hydration
,”
Transp. Porous Media
,
66
(
3
), pp.
341
372
.10.1007/s11242-006-0014-z
23.
Ehlers
,
W.
,
Acarturk
,
A.
, and
Karajan
,
N.
,
2010
, “
Advances in Modeling Saturated Soft Biological Tissues and Chemically Active Gels
,”
Arch. Appl. Mech.
,
80
(
5
), pp.
467
478
.10.1007/s00419-009-0386-y
24.
Bennethum
,
L. S.
and
Cushman
,
J. H.
,
2002
, “
Multicomponent, Multiphase Thermodynamics of Swelling Porous Media With Electroquasistatics: Part I
,”
Transp. Porous Media
,
47
(
3
), pp.
309
336
.10.1023/A:1015558130315
25.
Bennethum
,
L. S.
and
Cushman
,
J. H.
,
2002
, “
Multicomponent, Multiphase Thermodynamics of Swelling Porous Media With Electroquasistatics: Part II
,”
Transp. Porous Media
,
47
(
3
), pp.
337
362
.10.1023/A:1015558130315
26.
Huyghe
,
J. M.
and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
25
, pp.
793
802
.10.1016/S0020-7225(96)00119-X
27.
Yeung
,
A. T.
and
Mitchell
,
J. K.
,
1993
, “
Coupled Fluid, Electrical and Chemical Flows in Soil
,”
Geotechnique
,
43
(
1
), pp.
121
134
.10.1680/geot.1993.43.1.121
28.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.10.1115/1.2894880
29.
Looker
,
J. R.
and
Carnie
,
S. L.
,
2006
, “
Homogenization of the Ionic Transport Equations in Periodic Porous Media
,”
Transp. Porous Media
,
65
, pp.
107
131
.10.1007/s11242-005-6080-9
30.
Moyne
,
C.
and
Murad
,
M.
,
2006
, “
A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager's Reciprocity Relations in Expansive Clays: I. Homogenization Analysis
,”
Transp. Porous Media
,
62
, pp.
333
380
.10.1007/s11242-005-1290-8
31.
Alshawabkeh
,
A. N.
and
Acar
,
Y. B.
,
1996
, “
Electrokinetic Remediation: Theoretical Model,
J. Geotech. Eng.
,
122
, pp.
186
196
.10.1061/(ASCE)0733-9410(1996)122:3(186)
32.
Dangla
,
P.
,
Chong
,
T. F.
, and
Gaulard
,
F.
,
2004
, “
Modelling of pH-Dependent Electro-Osmotic Flows
,”
C. R. Mec.
,
332
(11), pp.
915
920
.10.1016/j.crme.2004.07.008
33.
Lemaire
,
T.
,
Lemaire
,
T.
,
Moyne
,
C.
, and
Stemmelen
,
D.
,
2007
, “
Modeling of Electro-Osmosis in Clayey Materials Including pH Effects
,”
Phys. Chem. Earth
,
32
, pp.
441
452
.10.1016/j.pce.2006.05.004
34.
Lima
,
S. A.
,
Murad
,
M. A.
, and
Moyne
,
C.
, and
Stemmelen
,
D.
,
2010
, “
A Three-Scale Model of pH-Dependent Flows and Ion Transport With Equilibrium Adsorption in Kaolinite Clays: I. Homogenization Analysis
,”
Transp. Porous Media
,
85
(
1
), pp.
23
44
.10.1007/s11242-010-9545-4
35.
Lima
,
S. A.
,
Murad
,
M. A.
,
Moyne
,
C.
,
Stemmlen
,
D.
, and
Boutin
,
C.
,
2010
, “
A Three-Scale Model of pH-Dependent Flows and Ion Transport With Equilibrium Adsorption in Kaolinite Clays: II. Effective-Medium Behavior
,”
Transp. Porous Media
,
85
(
1
), pp.
45
78
.10.1007/s11242-010-9546-3
36.
Lima
,
S. A.
,
Murad
,
M. A.
,
Moyne
,
C.
, and
Stemmlen
,
D.
,
2010
, “
Electro-Osmosis in Kaolinite With pH-Dependent Surface Charge Modelling by Homogenization
,”
An. Acad. Bras. Cienc.
,
82
(
1
), pp.
223
242
.10.1590/S0001-37652010000100016
37.
Lima
,
S. A.
,
Murad
,
M. A.
,
Moyne
,
C.
, and
Stemmelen
,
D.
,
2008
, “
A Three-Scale Model for pH-Dependent Steady Flows in 1:1 Clays
,”
Acta Geotech.
,
3
(
2
), pp.
153
174
.10.1007/s11440-008-0070-3
38.
Stumm
,
W.
,
1992
,
Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems
,
Wiley-Interscience
, New York.
39.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
1960
,
Electrodynamics of Continuous Media
,
Pergamon
,
Oxford, UK
.
40.
Eringen
,
A. C.
and
Maugin
,
G. A.
,
1982
,
Electrodynamic of Continua
,
Springer-Verlag
,
Berlin
.
41.
Moyne
,
C.
and
Murad
,
M.
,
2002
, “
Electro-Chemo-Mechanical Couplings in Swelling Clays Derived From a Micro/Macro-Homogenization Procedure
,”
Int. J. Solids Struct.
,
39
, pp.
6159
6190
.10.1016/S0020-7683(02)00461-4
42.
Sanchez–Palencia
,
E.
1980
,
Non-Homogeneous Media and Vibration Theory
, Lecture Notes in Physics,
Springer-Verlag
,
Berlin
.
43.
Auriault
,
J. L.
,
1991
, “
Heterogeneous Media: Is an Equivalent Homogeneous Description Always Possible?
,”
Int. J. Eng. Sci.
,
29
, pp.
785
-
795
.10.1016/0020-7225(91)90001-J
44.
Auriault
,
J. L.
and
Sanchez-Palencia
,
E.
,
1977
, “
Etude du comportement macroscopique d'un milieu poreux saturee deformable
,”
J. Mec.
,
16
(4), pp.
575
603
.
45.
Terada
,
K.
,
Ito
,
T.
, and
Kikichi
,
N.
,
1998
, “
Characterization of the Mechanical Behaviors of Solid-Fluid Mixture by the Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
153
, pp.
223
253
.10.1016/S0045-7825(97)00071-6
46.
Moyne
,
C.
and
Murad
,
M.
,
2003
, “
Macroscopic Behavior of Swelling Porous Media Derived From Micromechanical Analysis
,”
Transp. Porous Media
,
50
, pp.
127
151
.10.1023/A:1020665915480
47.
Coussy
,
O.
,
1994
,
Mechanics of Porous Continua
,
John Wiley and Sons
,
New York
, p.
24
.
48.
Purolite
,
U. S. A.
,
1999
, “
Product Data Sheet—Purolite C104 Weak Acid Cation Exchange Resin
,”
Bala Cynwyd, PA
.
49.
Saha
,
B.
and
Streat
,
M.
,
2005
, “
Adsorption of Trace Heavy Metals: Application of Surface Complexation Theory to a Macroporous Polymer and a Weakly Acidic Ion-Exchange Resin
,”
Ind. Eng. Chem. Res
,
44
, pp.
8671
8681
.10.1021/ie048848+
50.
Ponce
,
R.
,
2008
, “
A Two-Scale Model of Electro-Chemo-Mechanical Coupling in Expansive Polymers Sensitive to pH and Salinity
,”. Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
51.
Soldatov
,
V. S.
,
Sosinovich
,
Z. I.
,
Korshunova
,
T. A.
, and
Mironova
,
T. V.
,
2004
, “
Acid-Base Properties of Ion-Exchangers. I. Optimising of Potentiometric Titration of Ion Exchangers Exemplified by Carboxylic Acid Resins
,”
React. Funct. Polym.
,
58
, pp.
3
12
.10.1016/j.reactfunctpolym.2003.11.003
52.
Helfferich
,
F.
,
1962
,
Ion Exchange
,
Mc Graw-Hill
,
New York
.
53.
Gans
,
P.
,
1992
,
Data Fitting in the Chemical Sciences
,
Wiley
,
Chichester, UK
.
54.
Gans
,
P.
,
Sabatini
,
A.
, and
Vacca
,
A.
,
1996
, “
Investigation of Equilibria in Solution. Determination of Equilibria Constants With the HYPERQUAD Suite of Programs
,”
Talanta
,
43
(10), pp.
1739
1753
.10.1016/0039-9140(96)01958-3
55.
Gans
,
P.
,
Sabatini
,
A.
, and
Vacca
,
A.
,
2000
, “
Hyperquad Computer-Program Suite
,”
Abstr. Pap.—Am. Chem. Soc.
,
219
, pp.
U763
U763
.
56.
Horst
,
J.
,
Holl
,
W. H.
, and
Eberle
,
S. H.
,
1990
, “
Application of the Surface Complex-Formation Model to Exchange Equilibria on Ion-Exchange Resins. 1. Weak-Acid Resins
,”
React. Polym.
,
13
, pp.
209
231
.10.1016/0923-1137(90)90092-I
57.
Hasnat
,
A.
and
Juvekar
,
V. A.
,
1996
, “
Ion-Exchange Kinetics—Heterogeneous Resin-Phase Model
,”
AIChE J.
,
42
, pp.
161
175
.10.1002/aic.690420114
58.
Tiihonen
,
J.
,
Markkanen
,
I.
,
Laatikanen
,
M.
, and
Paatero
,
E.
,
2001
, “
Elasticity of Ion-Exchange Resin Beads in Solvent Mixtures
,”
J. Appl. Polym. Sci.
,
82
, pp.
1256
1264
.10.1002/app.1959
You do not currently have access to this content.