The strength homogenization of cohesive-frictional solids influenced by the presence of two pressurized pore spaces of different characteristic sizes is addressed in this study. A two-scale homogenization model is developed based on limit analysis and the second-order method (SOM) in linear comparison composite theory, which resolves the nonlinear strength behavior through the use of linear comparison composites with optimally chosen properties. For the scale of the classical configuration of a porous solid, the formulation employs a compressible thermoelastic comparison composite to deliver closed-form expressions of strength criteria. Comparisons with numerical results reveal that the proposed homogenization estimates for drained conditions are adequate except for high triaxialities in the mean compressive strength regime. At the macroscopic scale of the double-porosity material, the SOM results are in agreement with strength criteria predicted by alternative micromechanics solutions for materials with purely cohesive solid matrices and drained conditions. The model predictions for the cohesive-frictional case show that drained strength development in granularlike composites is affected by the partitioning of porosity between micro- and macropores. In contrast, the drained strength is virtually equivalent for single- and double-porosity materials with matrix-inclusion morphologies. Finally, the second-order linear comparison composite approach confirms the applicability of an effective stress concept, previously proposed in the literature of homogenization of cohesive-frictional porous solids, for double-porosity materials subjected to similar pressures in the two pore spaces. For dissimilar pore pressures, the model analytically resolves the complex interplays of microstructure, solid properties, and volume fractions of phases, which cannot be recapitulated by the effective stress concept.

References

References
1.
Coulomb
,
C. A.
,
1773
, “
Essai sur une application des règles de Maximis et Minimis à quelques problèmes de statique relatifs à l'architecture
,”
Mémoire à l'Académie Royale des Sciences
,
Paris
.
2.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Quarterly Appl. Math.
,
10
, pp.
157
165
.
3.
Schofield
,
A.
, and
Wroth
,
P.
,
1968
,
Critical State Soil Mechanics
,
McGraw-Hill
,
New York
.
4.
Hoek
,
E.
, and
Brown
,
E. T.
,
1997
, “
Practical Estimates of Rock Mass Strength
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
8
), pp.
1165
1186
.10.1016/S1365-1609(97)80069-X
5.
Suquet
P.
,
1982
,
Plasticité et Homogénéisation, Thèse de Doctorat d'Etat dissertation
,
Université Pierre et Marie Curie
,
Paris, France
.
6.
de Buhan
P.
,
1986
,
Approche Fondamentale du Calcul à la Rupture des Ouvrages en Sols Renforcés, Thèse de Doctorat d'Etat dissertation
,
Université de Paris VI
,
Paris, France
.
7.
de Buhan
,
P.
, and
Taliercio
,
A.
,
1991
, “
A Homogenization Approach to the Yield Strength of Composite Materials
,”
Eur. J. Mech. A/Solids
,
10
(
2
), pp.
129
54
.
8.
Lee
,
B. J.
, and
Mear
,
M. E.
,
1992
, “
Effective Properties of Power-Law Solids Containing Elliptical Inhomogeneities: I. Rigid Inclusions II. Voids
,”
Mech. Mat.
,
14
(
4
), pp
313
335
, 337–356.10.1016/0167-6636(92)90023-7
9.
Suquet
,
P.
,
1997
, “
Effective Behavior of Nonlinear Composites
,”
Continuum Micromechanics
,
P.
Suquet
, ed.,
Springer-Verlag
,
Berlin
, pp.
197
264
.
10.
Barthélémy
,
J.-F.
, and
Dormieux
,
L.
,
2003
, “
Determination of the Macroscopic Strength Criterion of a Porous Medium by Nonlinear Homogenization
,”
Comptes Rendus Mécanique
,
331
(
4
), pp.
271
276
.10.1016/S1631-0721(03)00063-9
11.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F.-J.
,
2006
,
Microporomechanics
,
Wiley
,
Chichester
, UK.
12.
Cariou
,
S.
,
Ulm
,
F.-J.
, and
Dormieux
,
L.
,
2008
, “
Hardness-Packing Density Scaling Relations for Cohesive-Frictional Porous Materials
,”
J. Mech. Phys. Sol.
,
56
(
3
), pp.
924
952
.10.1016/j.jmps.2007.06.011
13.
Lemarchand
,
E.
,
Ulm
,
F.-J.
, and
Dormieux
,
L.
,
2002
, “
Effect of Inclusions on Friction Coefficient of Highly Filled Composite Materials
,”
J. Eng. Mech.
,
128
(
8
), pp.
876
884
.10.1061/(ASCE)0733-9399(2002)128:8(876)
14.
Barthélémy
,
J.-F.
, and
Dormieux
,
L.
,
2004
, “
A Micromechanical Approach to the Strength Criterion of Drucker–Prager Materials Reinforced by Rigid Inclusions
,”
Int. J. Num. Anal. Meth. Geomech.
,
28
(
7–8
), pp.
565
582
.10.1002/nag.368
15.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Sol.
,
39
(
1
), pp.
45
71
.10.1016/0022-5096(91)90030-R
16.
Ponte Castañeda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Sol.
,
40
(
8
), pp.
1757
1788
.10.1016/0022-5096(92)90050-C
17.
Ponte Castañeda
,
P.
,
1996
, “
Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,”
J. Mech. Phys. Sol.
,
44
(
6
), pp.
827
862
.10.1016/0022-5096(96)00015-4
18.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenization Estimates for Nonlinear Composites Incorporating Field Fluctuations: I. Theory
,”
J. Mech. Phys. Sol.
,
50
(
4
), pp.
737
757
.10.1016/S0022-5096(01)00099-0
19.
Bilger
,
N.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Masson
,
R.
,
2002
, “
New Bounds and Estimates for Porous Media With Rigid Perfectly Plastic Matrix
,”
Comptes Rendus Mécanique
,
330
(
2
), pp.
127
132
.10.1016/S1631-0721(02)01438-9
20.
Vincent
,
P.-G.
,
Monerie
,
Y.
, and
Suquet
,
P.
,
2009
, “
Porous Materials With Two Populations of Voids Under Internal Pressure: I. Instantaneous Constitutive Relations
,”
Int. J. Sol. Struct.
,
46
(
3–4
), pp.
480
506
.10.1016/j.ijsolstr.2008.09.003
21.
Danas
,
K.
, and
Ponte Castañeda
,
P.
,
2009
, “
A Finite-Strain Model for Anisotropic Viscoplastic Porous Media: I. Theory
,”
Eur. J. Mech. A/Solids
,
28
(
3
), pp.
387
401
.10.1016/j.euromechsol.2008.11.002
22.
Gathier
,
B.
, and
Ulm
,
F. J.
,
2008
, “
Multiscale Strength Homogenization—Application to Shale Nanoindentation
,”
CEE Research Report R08-01
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
23.
Ortega
,
J. A.
,
Gathier
,
B.
, and
Ulm
,
F.-J.
,
2010
, “
Homogenization of Cohesive-Frictional Strength Properties of Porous Composites: Linear Comparison Composite Approach
,”
J. Nanomech. Micromech.
,
1
(
1
), pp.
11
23
.10.1061/(ASCE)NM.2153-5477.0000025
24.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: I. Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mat. Tech.
,
99
, pp.
2
15
.10.1115/1.3443401
25.
Leblond
,
J.-B.
,
2003
,
Mécanique de la Rupture Fragile et Ductile. Etudes en Mécanique des Matériaux et des Structures
,
Hermes Science
,
Paris
.
26.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1997
, “
Recent Extensions of Gurson's Model for Porous Ductile Metals
,”
Continuum Micromechanics
,
P.
Suquet
, ed.,
Springer-Verlag
,
Berlin
, pp.
61
130
.
27.
Trillat
,
M.
, and
Pastor
,
J.
,
2005
, “
Limit Analysis and Gurson's Model
,”
Eur. J. Mech. A/Solids
,
24
(
5
), pp.
800
819
.10.1016/j.euromechsol.2005.06.003
28.
Jeong
,
H. Y.
,
2002
, “
A New Yield Function and a Hydrostatic Stress-Controlled Void Nucleation Model for Porous Solids With Pressure-Sensitive Matrices
,”
Int. J. Sol. Struct.
,
39
(
5
), pp.
1385
1403
.10.1016/S0020-7683(01)00260-8
29.
Guo
,
T. F.
,
Faleskog
,
J.
, and
Shih
,
C. F.
,
2008
, “
Continuum Modeling of a Porous Solid With Pressure-Sensitive Dilatant Matrix
,”
J. Mech. Phys. Sol.
,
56
(
6
), pp.
2188
2212
.10.1016/j.jmps.2008.01.006
30.
Suquet
,
P.
,
1995
, “
Overall Properties of Nonlinear Composites: A Modified Secant Modulus Theory and Its Link With Ponte Castañeda's Nonlinear Variational Procedure
,”
C. R. Acad. Sci. Paris
,
320
(Série IIb), pp.
563
571
.
31.
Desrues
,
J.
,
2002
, “
Limitations du Choix de l'Angle de Frottement pour le Critère de Plasticité de Drucker–Prager
,”
Revue Française de Génie Civil
,
6
, pp.
853
862
.
32.
Salençon
,
J.
,
1990
, “
An Introduction to the Yield Design Theory and Its Application to Soil Mechanics
,”
Eur. J. Mech. A/Solids
,
9
(
5
), pp.
477
500
.
33.
Ulm
,
F. J.
, and
Coussy
,
O.
,
2003
,
Mechanics and Durability of Solids, Vol. 1: Solid Mechanics
,
Prentice Hall
,
Upper Saddle River, NJ
.
34.
Levin
,
V. M.
,
1967
, “
Thermal Expansion Coefficients of Heterogeneous Materials
,”
Mekhanika Tverdogo Tela
,
2
, pp.
83
94
.
35.
Laws
,
N.
,
1973
, “
On the Thermostatics of Composite Materials
,”
J. Mech. Phys. Sol.
,
21
(
1
), pp.
9
17
.10.1016/0022-5096(73)90027-6
36.
Perrin
,
G.
, and
Leblond
,
J. B.
,
1990
, “
Analytical Study of a Hollow Sphere Made of Plastic Porous Material and Subjected to Hydrostatic Tension—Application to Some Problems in Ductile Fracture of Metals
,”
Int. J. Plast.
,
6
(
6
), pp.
677
699
.10.1016/0749-6419(90)90039-H
37.
de Buhan
,
P.
, and
Dormieux
,
L.
,
1996
, “
On the Validity of the Effective Stress Concept for Assessing the Strength of Saturated Porous Materials: A Homogenization Approach
,”
J. Mech. Phys. Sol.
,
44
(
10
), pp.
1649
1667
.10.1016/0022-5096(96)00046-4
38.
Fabrègue
,
D.
, and
Pardoen
,
T.
,
2008
, “
A Constitutive Model for Elastoplastic Solids Containing Primary and Secondary Voids
,”
J. Mech. Phys. Sol.
,
56
(
3
), pp.
719
741
.10.1016/j.jmps.2007.07.008
39.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metallurgica
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
40.
Hershey
,
A. V.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
J. Appl. Mech.
,
21
, pp.
226
240
.
41.
Kröner
,
E.
,
1958
, “
Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls
,”
Zeitschrift für Physik A Hadrons and Nuclei
,
151
(
4
), pp.
504
518
.
42.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
143
150
.10.1115/1.3636446
43.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,
J. Mech. Phys. Sol.
,
11
(
2
), pp.
127
140
.10.1016/0022-5096(63)90060-7
44.
Thoré
,
P.
,
Pastor
,
F.
,
Pastor
,
J.
, and
Kondo
,
D.
,
2009
, “
Closed-Form Solutions for the Hollow Sphere Model With Coulomb and Drucker–Prager Materials Under Isotropic Loadings
,”
Comptes Rendus Mécanique
,
337
(
5
), pp.
260
267
.10.1016/j.crme.2009.06.030
45.
Trillat
,
M.
,
Pastor
,
J.
, and
Thoré
,
P.
,
2006
, “
Limit Analysis and Conic Programming: Porous Drucker–Prager Material and Gurson's Model
,”
Comptes Rendus Mécanique
,
334
(
10
), pp.
599
604
.10.1016/j.crme.2006.07.016
46.
Pastor
,
F.
,
Thoré
,
P.
,
Loute
,
E.
,
Pastor
,
J.
, and
Trillat
,
M.
,
2008
, “
Convex Optimization and Limit Analysis: Application to Gurson and Porous Drucker–Prager Materials
,”
Eng. Fract. Mech.
,
75
(
6
), pp.
1367
1383
.10.1016/j.engfracmech.2007.07.008
47.
Pastor
,
J.
,
Thoré
,
P.
, and
Pastor
,
F.
,
2010
, “
Limit Analysis and Numerical Modeling of Spherically Porous Solids With Coulomb and Drucker–Prager Matrices
,”
J. Comp. Appl. Math.
,
234
(
7
), pp.
2162
2174
.10.1016/j.cam.2009.08.079
48.
Schweiger
,
H. F.
,
1994
. “
On the Use of Drucker–Prager Failure Criteria for Earth Pressure Problems
,”
Computers Geotech.
,
16
(
3
), pp.
223
246
.10.1016/0266-352X(94)90003-5
49.
Danas
,
K.
, and
Ponte Castañeda
,
P.
,
2009
, “
A Finite-Strain Model for Anisotropic Viscoplastic Porous Media: II. Applications
,”
Eur. J. Mech. A/Solids
,
28
(
3
), pp.
402
416
.10.1016/j.euromechsol.2008.11.003
You do not currently have access to this content.