In this paper we present a noninvasive technique based on the propagation of highly nonlinear solitary waves (HNSWs) to monitor the stability of dental implants. HNSWs are nondispersive mechanical waves that can form and travel in highly nonlinear systems, such as one-dimensional chains of spherical particles. The technique is based on the hypothesis that the mobility of a dental implant affects certain characteristics of the HNSWs reflected at the interface between a crystal-based transducer and the implant. To validate the research hypothesis we performed two experiments: first we observed the hydration of commercial plaster to simulate at large the osseointegration process that occurs in the oral connective tissue once a dental-endosteal threaded implant is surgically inserted; then, we monitored the decalcification of treated bovine bones immersed in an acid bath to simulate the inverse of the osseointegration process. In both series, we found a good correlation between certain characteristics of the HNSWs and the stiffness of the material under testing.

References

References
1.
Pastrav
,
L. C.
,
Jaecques
,
S. V.
,
Jonkers
,
I.
,
Perre
,
G. V.
, and
Mulier
,
M.
,
2009
, “
In Vivo Evaluation of a Vibration Analysis Technique for the Per-Operative Monitoring of the Fixation of Hip Prostheses
,”
J. Orthop. Surg. Res.
,
4
,
p.
10
.10.1186/1749-799X-4-10
2.
Atsumi
,
M.
,
Park
,
S. H.
, and
Wang
,
H. L.
,
2007
, “
Methods to Assess Implant Stability: Current Status
,”
Int. J. Oral Maxillof. Implants
,
22
,
pp.
743
754
.
3.
Chang
,
P.-C.
,
Lang
,
N. P.
, and
Giannobile
W. V.
,
2009
, “
Evaluation of Functional Dynamics During Osseointegration and Regeneration Associated With Oral Implants
,”
Clin. Oral Implants Res.
,
21
,
pp.
1
12
.10.1111/j.1600-0501.2009.01826.x
4.
Schulte
,
W.
,
D'Hoedt
,
B.
,
Lukas
,
D.
,
Muhlbradt
,
L.
,
Scholz
,
F.
,
Bretschi
,
J.
,
Frey
,
D.
,
Gudat
,
H.
,
Konig
,
M.
, and
Markl
,
M.
,
1983
, “
Periotest: A New Measurement Process for Periodontal Function
,”
Zahnarztl Mitt
,
73
,
pp.
1229
1230
.
5.
Schulte
,
W.
,
D'Hoedt
,
B.
,
Lukas
,
D.
,
Muhlbradt
,
L.
,
Scholz
,
F.
,
Bretschi
,
J.
,
Frey
,
D.
,
Gudat
,
H.
,
Konig
,
M.
, and
Markl
,
M.
,
1983
, “
Periotest: A New Measurement Process for Periodontal Function
,”
Zahnarztl Mitt
,
73
,
pp.
1233
1236
.
6.
Schulte
,
W.
,
D'Hoedt
,
B.
,
Lukas
,
D.
,
Muhlbradt
,
L.
,
Scholz
,
F.
,
Bretschi
,
J.
,
Frey
,
D.
,
Gudat
,
H.
,
Konig
,
M.
, and
Markl
,
M.
,
1983
, “
Periotest: A New Measurement Process for Periodontal Function
,”
Zahnarztl Mitt
,
73
,
pp.
1239
1240
.
7.
Schulte
,
W.
, and
Lukas
,
D.
,
1992
, “
The Periotest Method
,”
Int. Dent. J.
,
42
,
pp.
433
440
.
8.
Schulte
,
W.
, and
Lukas
,
D.
,
1993
, “
Periotest to Monitor Osseointegration and to Check the Occlusion in Oral Implantology
,”
J. Oral Implantol.
,
19
,
pp.
23
32
.
9.
Meredith
,
M.
,
1998
, “
A Review of Nondestructive Test Methods and Their Application to Measure the Stability and Osseointegration of Bone Anchored Endosseous Implants
,”
Crit. Rev. Biomed. Eng.
,
26
,
pp.
275
291
.
10.
Derhami
,
K.
,
Wolfaardt
,
J. F.
,
Faulkner
,
G.
, and
Grace
,
M.
,
1995
, “
Assessment of the Periotest Device in Baseline Mobility Measurements of Craniofacial Implants
,”
Int. J. Oral Maxillofac. Implants
,
10
(
2
),
pp.
221
229
.
11.
Meredith
,
N.
,
Alleyne
,
D.
, and
Cawley
,
P.
,
1996
, “
Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis
,”
Clin. Oral Implants Res.
,
7
,
pp.
261
267
.10.1034/j.1600-0501.1996.070308.x
12.
Meredith
,
N.
,
Book
,
K.
,
Friberg
,
B.
,
Jemt
,
T.
, and
Sennerby
,
L.
,
1997
, “
Resonance Frequency Measurements of Implant Stability In Vivo. A Cross-Sectional and Longitudinal Study of Resonance Frequency Measurements on Implants in the Edentulous and Partially Dentate Maxilla
,”
Clin. Oral Impl. Res.
,
8
,
pp.
226
233
.10.1034/j.1600-0501.1997.080309.x
13.
Watzek
,
G.
,
2004
,
Implants in Qualitatively Compromised Bone
, Vol. 1,
Quintessence Publishing Co.
,
Surrey, UK
,
p.
181
.
14.
Oh
,
J. S.
,
Kim
,
S. G.
,
Lim
,
S. C.
, and
Ong
,
J. L.
,
2009
, “
A Comparative Study of Two Noninvasive Techniques to Evaluate Implant Stability: Periotest and Osstell Mentor
,”
Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.
,
107
(
4
),
pp.
513
518
.10.1016/j.tripleo.2008.08.026
15.
Osstell
,
2012
, “
Ostell Scientific
,” accessed August 2, 2012, http://www.osstell.com/
16.
Hayashi
,
M.
,
Kobayashi
,
C.
,
Ogata
,
H.
,
Yamaoka
,
M.
, and
Ogiso
,
B.
,
2010
, “
A No-Contact Vibration Device for Measuring Implant Stability
,”
Clin. Oral Implants Res.
,
21
(
9
),
pp.
931
936
.10.1111/j.1600-0501.2010.01934.x
17.
Kim
,
D.-S.
,
Lee
,
W.-J.
,
Choi
,
S.-C.
,
Lee
,
S.-S.
,
Heo
,
M.-S.
,
Heo
,
K.-H.
, and
Yi
,
W.-J.
,
2011
, “
Development of a Dental Implant Mobility Measurement System Using an Inductive Sensor
,”
Proceedings of the 33rd Annual International Conference of the IEEE EMBS
,
Boston, MA
, August 30–September 3,
pp.
361
364
.
18.
Mupparapu
,
M.
, and
Singer
,
S. R.
,
2004
, “
Implant Imaging for the Dentist
,”
J. Can. Dent. Assoc.
,
70
(
1
),
p.
32
.
19.
Wodarski
,
J.
,
2005
, “
Assessment of the Changes Occurring in the Bone Cement-Implant Border Zones Using the Computer Image Analysis
,”
Bio-Algorithms Med-Syst.
,
1
(
1/2
),
pp.
317
320
.
20.
Turkyilmaz
,
I.
,
Tozum
,
T. F.
,
Tumer
,
C.
, and
Ozbek
,
E. N.
,
2006
, “
Assessment of Correlation Between Computerized Tomography Values of the Bone, and Maximum Torque and Resonance Frequency Values at Dental Implant Placement
,”
J. Oral Rehabil.
,
33
,
pp.
881
888
.10.1111/j.1365-2842.2006.01692.x
21.
Berndt
,
D.
,
Luckow
,
M.
,
Lambrecht
,
J. T.
,
Beckmann
,
F.
, and
Müller
,
B.
,
2008
, “
Quality Assessment of Clinical Computed Tomography
,”
Proc. SPIE
,
7078
,
pp.
70780N1
N10
.10.1117/12.794683
22.
Nesterenko
,
V. F.
,
1984
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
J. Appl. Mech. Tech. Phys.
,
24
,
pp.
733
743
.10.1007/BF00905892
23.
Nesterenko
,
V. F.
,
2001
,
Dynamics of Heterogeneous Materials
,
Springer-Verlag
,
New York
.
24.
Coste
,
C.
Falcon
,
E.
, and
Fauve
,
S.
,
1997
, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
,
pp.
6104
6117
.10.1103/PhysRevE.56.6104
25.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
, p.
016603
.10.1103/PhysRevE.72.016603
26.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
,
2007
, “
Solitary Wave Trains in Granular Chains: Experiments, Theory and Simulations
,”
Granular Matter
,
10
,
pp.
3
20
.10.1007/s10035-007-0054-2
27.
Yang
,
J.
,
Silvestro
,
C.
,
Khatri
,
D.
,
De Nardo
,
L.
, and
Daraio
,
C.
,
2011
, “
Interaction of Highly Nonlinear Solitary Waves With Linear Elastic Media
,”
Phys. Rev. E
,
83
, p.
046606
.10.1103/PhysRevE.83.046606
28.
Sen
,
S.
,
Manciu
,
M.
, and
Wright
,
J. D.
,
1998
, “
Soliton Like Pulses in Perturbed and Driven Hertzian Chains and Their Possible Applications in Detecting Buried Impurities
,”
Phys. Rev. E
,
57
,
pp.
2386
2397
.10.1103/PhysRevE.57.2386
29.
Manciu
,
M.
,
Sen
,
S.
, and
Hurd
,
A. J.
,
1999
, “
The Propagation and Backscattering of Soliton-Like Pulses in a Chain of Quartz Beads and Related Problems. (I). Propagation
,”
Physica A
,
274
,
pp.
588
606
.10.1016/S0378-4371(99)00371-4
30.
Manciu
,
M.
,
Sen
,
S.
, and
Hurd
,
A. J.
,
1999
, “
The Propagation and Backscattering of Soliton-Like Pulses in a Chain of Quartz Beads and Related Problems. (II). Backscattering
,”
Physica A
,
274
,
pp.
607
618
.10.1016/S0378-4371(99)00372-6
31.
Hong
,
J.
, and
Xu
,
A.
,
2002
, “
Nondestructive Identification of Impurities in Granular Medium
,”
Appl. Phys. Lett.
,
81
,
pp.
4868
4870
.10.1063/1.1522829
32.
Porter
,
M. A.
,
Daraio
,
C.
,
Herbold
,
E. B.
,
Szelengowicz
,
I.
, and
Kevrekidis
,
P. G.
,
2008
, “
Highly Nonlinear Solitary Waves in Periodic Dimer Granular Chains
,”
Phys. Rev. E
,
77
,
p.
015601
.10.1103/PhysRevE.77.015601
33.
Starosvetsky
,
Y.
,
Jayaprakash
,
K. R.
, and
Vakakis
,
A. F.
,
2012
, “
Scattering of Solitary Waves and Excitation of Transient Breathers in Granular Media by Light Intruders and No Precompression
,”
J. Appl. Mech.
,
79
(
1
), p.
011001
.10.1115/1.4003360
34.
Ni
,
X.
, and
Rizzo
,
P.
,
2012
, “
Highly Nonlinear Solitary Waves for the Inspection of Adhesive Joints
,”
Exp. Mech.
(accepted)
.
35.
Ni
,
X.
, and
Rizzo
,
P.
,
2011
, “
Use of Highly Nonlinear Solitary Waves in NDT
,”
Mater. Eval.
(accepted)
.
36.
Ni
,
X.
,
Rizzo
,
P.
,
Yang
,
J.
,
Kathri
,
D.
, and
Daraio
,
C.
,
2011
, “
Monitoring the Hydration of Cement Using Highly Nonlinear Solitary Waves
,” NDT&E International (in press).
37.
Ni
,
X.
,
Nassiri
,
S.
,
Rizzo
,
P.
, and
Vandenbossche
,
J.
,
2011
, “
Highly Nonlinear Solitary Waves-Based Sensor for Monitoring Concrete
,”
Proc. SPIE
,
7981
, p.
79812L
.10.1117/12.880280
38.
Ni
,
X.
,
Rizzo
,
P.
, and
Daraio
,
C.
,
2011
, “
Actuators for the Generation of Highly Nonlinear Solitary Waves
,”
Rev. Sci. Instr.
,
82
(
3
), p.
034902
.10.1063/1.3556442
39.
Ni
,
X.
,
Rizzo
,
P.
, and
Daraio
,
C.
,
2011
, “
Laser-Based Excitation of Nonlinear Solitary Waves in a Chain of Beads
,”
Phys. Rev. E
,
84
, p.
026601
.10.1103/PhysRevE.84.026601
40.
Carino
,
N. J.
,
2004
, “
The Maturity Method
,”
Handbook of Nondestructive Testing
,
V. M.
Malhotra
and
N. J.
Carino
, eds.,
CRC Press
,
Boca Raton, FL
,
Chap. 5
.
41.
Shunmugasamy
,
V. C.
,
Gupta
,
N.
,
Pessoa
,
R. S.
,
Janal
,
M. N.
, and
Coelho
,
P. G.
,
2011
, “
Influence of Clinically Relevant Factors on the Immediate Biomechanical Surrounding for a Series of Dental Implant Designs
,”
J. Biomech. Eng.
,
133
(
3
), p.
031005
.10.1115/1.4003318
You do not currently have access to this content.