This paper studies the stability and transient response of electrostatically excited microbeam interacting with bounded compressible fluid. At first, employing Fourier-Bessel series, the related eigenvalue problem of the coupled system is solved. Investigating the change in the free vibration properties of the system, a parametric study is done, accounting for changing physical properties and geometric dimensions of the bounded fluid. Then, considering the step response of the coupled system, pull-in time and voltage and also attraction zones of the microbeam are derived. It is shown that, beside the electrical property of the contained fluid, its inertial property could also change the transient response significantly. Fluid added mass by increasing the period of the free vibration response in stable condition also changes the pull-in time. In addition, it is found that the attraction zones of stable fixed points vary for different contained fluids that could change the sensitivity of the microbeam to uncertainty in the initial condition.

References

References
1.
Batra
,
R.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2007
, “
Review of Modeling Electrostatically Actuated Microelectromechanical Systems
,”
Smart Mater. Struct.
,
16
(
6
), pp.
23
31
.10.1088/0964-1726/16/6/R01
2.
Legtenberg
,
R.
, and
Tilmans
,
H.
,
1994
, “
Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators Part I: Design and Fabrication
,”
Sens. Actuators
, A,
45
(
1
), pp.
57
66
.10.1016/0924-4247(94)00812-4
3.
Pamidighantam
,
S.
,
Puers
,
R.
,
Baert
,
K.
, and
Tilmans
,
H.
,
2002
, “
Pull-In Voltage Analysis of Electrostatically Actuated Beam Structures With Fixed-Fixed and Fixed-Free End Conditions
,”
J. Micromech. Microeng.
,
12
, pp.
458
464
.10.1088/0960-1317/12/4/319
4.
Zhu
,
J.
,
2008
, “
Pull-In Instability of Two Opposing Microcantilever Arrays With Different Bending Rigidities
,”
Int. J. Mech. Sci.
,
50
, pp.
55
68
.10.1016/j.ijmecsci.2007.05.004
5.
Nayfeh
,
A. H.
,
Younis
,
M.
, and
Abdel-Rahman
,
E.
,
2007
, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
, pp.
153
168
.10.1007/s11071-006-9079-z
6.
Chao
,
P. C.-P.
,
Chiu
,
C. W.
, and
Liu
,
T.-H.
,
2008
, “
DC Dynamic Pull-In Predictions for a Generalized Clamped-Clamped Micro-Beam Based on a Continuous Model and Bifurcation Analysis
,”
J. Micromech. Microeng.
,
18
(11), p. 115008.10.1088/0960-1317/18/11/115008
7.
Krylov
,
S.
, and
Maimon
,
R.
,
2004
, “
Pull-In Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,”
J. Vibr. Acoust.
,
126
, pp.
332
342
.10.1115/1.1760559
8.
Rochus
,
V.
,
Rixen
,
D.
, and
Golinval
,
J.
,
2005
, “
Electrostatic Coupling of MEMS Structures: Transient Simulations and Dynamic Pull-In
,”
Nonlinear Anal. Theory
, Methods Appl.,
63
, pp.
1619
1633
.10.1016/j.na.2005.01.055
9.
Xie
,
W.
,
Lee
,
H.
, and
Lim
,
S.
,
2003
, “
Nonlinear Dynamic Analysis of MEMS Switches by Nonlinear Modal Analysis
,”
Nonlinear Dyn.
,
31
, pp.
243
256
.10.1023/A:1022914020076
10.
Joglekar
,
M. M.
, and
Pawaskar
,
D. N.
,
2011
, “
Estimation of Oscillation Period/Switching Time for Electrostatically Actuated Micro-Beam Type Switches
,”
Int. J. Mech. Sci.
,
53
, pp.
116
125
.10.1016/j.ijmecsci.2010.12.001
11.
Lin
,
R.
, and
Wang
,
W.
,
2006
, “
Structural Dynamics of Microsystems-Current State of Research and Future Directions
,”
Mech. Syst. Signal Process.
,
20
(
5
), pp.
1015
1043
.10.1016/j.ymssp.2005.08.013
12.
Yong
,
Z.
, and
Espinosa
,
H. D.
,
2004
, “
Reliability of Capacitive RF MEMS Switches at High and Low Temperatures
,”
Int. J. RF Microwave Comput.-Aided Eng.
,
14
, pp.
317
328
.10.1002/mmce.20015
13.
Yong
,
Z.
, and
Espinosa
,
H. D.
,
2004
, “
Effect of Temperature on Capacitive RF MEMS Switch Performance—A Coupled Field Analysis
,”
J. Micromech. Microeng.
,
14
, pp.
1270
1279
.10.1088/0960-1317/14/8/021
14.
Talebian
,
S.
,
Rezazadeh
,
G.
,
Fathalilou
,
M.
, and
Toosi
,
B.
,
2010
, “
Effect of Temperature on Pull-In Voltage and Natural Frequency of an Electrostatically Actuated Microplate
,”
Mechatronics
,
20
, pp.
666
673
.10.1016/j.mechatronics.2010.07.009
15.
Feng
,
C.
,
Zhao
,
Ya-Pu
, and
Liu
,
D. Q.
,
2007
, “
Squeeze-Film Effects in MEMS Devices With Perforated Plates for Small Amplitude Vibration
,”
Microsyst Technol.
,
13
, pp.
625
633
.10.1007/s00542-006-0285-x
16.
Li
,
W.-L.
,
2008
, “
Squeeze Film Effects on Dynamic Performance of MEMS l-Mirrors-Consideration of Gas Rarefaction and Surface Roughness
,”
Microsyst Technol.
,
14
, pp.
315
324
.10.1007/s00542-007-0479-x
17.
Bao
,
M.
, and
Yang
,
H.
,
2007
, “
Squeeze Film Air Damping in MEMS
,”
Sens. Actuators A
,
136
, pp.
3
27
.10.1016/j.sna.2007.01.008
18.
Pandey
,
A. K.
, and
Pratap
,
R.
,
2007
, “
Effect of Flexural Modes on Squeeze Film Damping in MEMS Cantilever Resonators
,”
J. Micromech. Microeng.
,
17
, pp.
2475
2484
.10.1088/0960-1317/17/12/013
19.
Ali
,
S. M.
,
Mantell
,
S. C.
, and
Longmire
,
E. K.
,
2011
, “
Mechanical Performance of Microcantilevers in Liquids
,”
J. Microelectromech. Syst.
,
20
(
2
), pp.
441
450
.10.1109/JMEMS.2011.2107883
20.
Inaba
,
S.
,
Akaishi
K.
,
Mori
,
T.
, and
Hane
,
K.
,
1993
, “
Analysis of the Resonance Characteristics of a Cantilever Vibrated Phototherrnally in a Liquid
,”
J. Appl. Phys.
,
73
(
6
), pp.
2654
2658
.10.1063/1.353060
21.
Lindholm
,
U. S.
,
Kana
,
D. D.
,
Chu
,
W. H.
, and
Abramson
,
H. N.
,
1965
, “
Elastic Vibration Characteristics of Cantilever Plates in Water
,”
J. Ship Res.
,
9
, pp.
11
22
.
22.
Minami
,
H.
,
1998
, “
Added Mass of a Membrane Vibrating at Finite Amplitude
,”
J. Fluids Struct.
12
, pp.
919
932
.10.1006/jfls.1998.0175
23.
Meyerhoff
,
W. K.
,
1970
, “
Added Masses of Thin Rectangular Plates Calculated From Potential Theory
,”
J. Ship Res.
,
14
, pp.
100
111
.
24.
Ergin
,
A.
, and
Ugurlu
,
B.
,
2003
, “
Linear Vibration Analysis of Cantilever Plates Partially Submerged in Fluid
,”
J. Fluids Struct.
,
17
, pp.
927
939
.10.1016/S0889-9746(03)00050-1
25.
Sinha
,
J. K.
,
Sandeep
,
S.
, and
Rama
,
R. A.
,
2003
, “
Added Mass and Damping of Submerged Perforated Plates
,”
J. Sound Vib.
,
260
, pp.
549
564
.10.1016/S0022-460X(02)01023-4
26.
Yadykin
,
Y.
,
Tenetov
,
V.
, and
Levin
,
D.
,
2003
, “
The Added Mass of a Flexible Plate Oscillating in a Fluid
,”
J. Fluids Struct.
,
17
, pp.
115
123
.10.1016/S0889-9746(02)00100-7
27.
Gorman
,
D. G.
,
Trendafilova
,
I.
,
Mulholland
,
A. J.
, and
Horáček
,
J.
,
2007
, “
Analytical Modelling and Extraction of the Modal Behaviour of a Cantilever Beam in Fluid Interaction
,”
J. Sound Vib.
,
308
, pp.
231
245
.10.1016/j.jsv.2007.07.032
28.
Rezazadeh
,
G.
,
Fathalilou
,
M.
,
Shabani
,
R.
,
Tarverdilou
,
S.
, and
Talebian
,
S.
,
2009
, “
Dynamic Characteristics and Forced Response of an Electrostatically-Actuated Micro-Beam Subjected to Fluid Loading
,”
Microsyst. Technol.
,
15
, pp.
1355
1363
.10.1007/s00542-009-0906-2
29.
Sader
,
J. E.
,
1998
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
84
(
1
), pp.
64
76
.10.1063/1.368002
30.
Harrison
,
C.
,
Tavernier
,
E.
,
Vancauwenberghe
,
O.
,
Donzier
,
E.
,
Hsud
,
K.
,
Goodwin
,
A.
,
Marty
,
F.
, and
Mercier
,
B.
,
2007
, “
On the Response of a Resonating Plate in a Liquid Near a Solid Wall
,”
Sens. Actuators
, A,
134
, pp.
414
426
.10.1016/j.sna.2006.06.023
31.
Chon
,
J. W. M.
,
Mulvaney
,
P.
, and
Sader
,
J. E.
,
2000
, “
Experimental Validation of Theoretical Models for the Frequency Response of Atomic Force Microscope Cantilever Beams Immersed in Fluids
,”
J. Appl. Phys.
,
87
(
8
), pp.
3978
3988
.10.1063/1.372455
32.
Naik
,
T.
,
Longmire
,
E. K.
, and
Mantell
,
S. C.
,
2003
, “
Dynamic Response of a Cantilever in Liquid Near a Solid Wall
,”
Sens. Actuators, A
,
102
, pp.
240
254
.10.1016/S0924-4247(02)00398-9
33.
Krylov
,
S.
,
2007
, “
Lyapunov Exponents as a Criterion for the Dynamic Pull-In Instability of Electrostatically Actuated Microstructures
,”
Int. J. Non-Linear Mech.
,
42
, pp.
626
642
.10.1016/j.ijnonlinmec.2007.01.004
34.
Hu
,
Y. C.
,
Chang
,
C. M.
, and
Huang
,
S. C.
,
2004
, “
Some Design Considerations on the Electrostatically Actuated Microstructures
,”
Sens. Actuators
, A,
112
, pp.
155
161
.10.1016/j.sna.2003.12.012
35.
Chaterjee
,
S.
, and
Pohit
,
G.
,
2009
, “
A Large Deflection Model for the Pull-In Analysis of Electrostatically Actuated Microcantilever Beams
,”
J. Sound Vib.
,
322
, pp.
969
986
.10.1016/j.jsv.2008.11.046
36.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.