Thin sheets of unidirectional carbon fibers embedded in a silicone matrix can be folded to very high curvatures, as elastic microbuckles with a half-wavelength on the order of 1 mm decrease the maximum strain in the fibers near the compression surface. This paper shows that probabilistic failure models derived from tension tests on individual fibers can be used to predict accurately the value of the outer surface curvature of the sheet, at which a small percentage of fibers break when a crease is formed in the sheet. The most accurate results are obtained by using a strain-based Weibull distribution of the failure probability in tension.

References

References
1.
Francis
,
W.
,
Lake
,
M. S.
,
Mallick
,
K.
,
Freebury
,
G. E.
, and
Maji
,
A.
,
2003
, “
Development and Testing of a Hinge/Actuator Incorporating Elastic Memory Composites
,”
44th AIAA Structures
,
Structural Dynamics, and Materials Conference
,
Norfolk, VA
, April 7–10, Paper No. AIAA 2003-1496.
2.
Datashvili
,
L.
,
Baier
,
H.
,
Wehrle
,
E.
,
Kuhn
,
T.
, and
Hoffmann
,
J.
,
2010
, “
Large Shell-Membrane Space Reflectors
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics, and Materials Conference
,
Orlando, FL
, April 12–15, Paper No. AIAA 2010-2504.
3.
Murphey
,
T. W.
,
Meink
,
T.
, and
Mikulas
,
M. M.
,
2001
, “
Some Micromechanics Considerations of the Folding of Rigidizable Composite Materials
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics, and Materials Conference
, Seattle, WA, April 16–19, Paper No. AIAA-2001-1418.
4.
López Jiménez
,
F.
, and
Pellegrino
,
S.
,
2012
, “
Folding of Fiber Composites With a Hyperelastic Matrix
,”
Int. J. Solids Struct.
,
49
, pp.
395
407
.10.1016/j.ijsolstr.2011.09.010
5.
Reynolds
,
W. N.
, and
Sharp
,
J. V.
,
1974
, “
Crystal Shear Limit to Carbon Fibre Strength
,”
Carbon
,
12
, pp.
103
110
.10.1016/0008-6223(74)90018-9
6.
Bennett
,
S. C.
,
Johnson
,
D. J.
, and
Johnson
,
W.
,
1983
, “
Strength-Structure Relationships in PAN-Based Carbon Fibres
,”
J. Mater. Sci.
,
18
, pp.
3337
3347
.10.1007/BF00544159
7.
Donnet
,
J. B.
,
Wang
,
T. K.
,
Peng
,
J. C. M.
, and
Rebouillat
,
S.
,
1998
,
Carbon Fibers
,
3rd ed.
,
Marcel Dekker
,
New York
.
8.
Bader
,
M. G.
,
Pickering
,
K. L.
,
Buxton
,
A.
,
Rezaifard
,
A.
, and
Smith
,
P. A.
,
1993
, “
Failure Micromechanisms in Continuous Carbon-Fibre/Epoxy-Resin Composites
,”
Compos. Sci. Technol.
,
48
, pp.
135
142
.10.1016/0266-3538(93)90129-5
9.
Naito
,
K.
,
Tanaka
,
Y.
,
Yang
,
J.-M.
, and
Kagawa
,
Y.
,
2008
, “
Tensile Properties of Ultrahigh Strength PAN-Based, Ultrahigh Modulus Pitch-Based and High Ductility Pitch-Based Carbon Fibers
,”
Carbon
,
46
, pp.
189
195
.10.1016/j.carbon.2007.11.001
10.
Sinclair
,
D.
,
1950
, “
A Bending Method for Measurement of the Tensile Strength and Young's Modulus of Glass Fibers
,”
J. Appl. Phys.
,
21
, pp.
380
386
.10.1063/1.1699670
11.
Oya
,
N.
, and
Johnson
,
D. J.
,
1999
, “
Direct Measurement of Longitudinal Compressive Strength in Carbon Fibres
,”
Carbon
,
37
, pp.
1539
1544
.10.1016/S0008-6223(99)00033-0
12.
Williams
,
W. S.
,
Steffens
,
D. A.
, and
Bacon
,
R.
,
1970
, “
Bending Behavior and Tensile Strength of Carbon Fibers
,”
J. Appl. Phys.
,
41
, pp.
4893
4901
.10.1063/1.1658559
13.
Jones
,
W. R.
, and
Johnson
,
J. W.
,
1971
, “
Intrinsic Strength and Non-Hookean Behaviour of Carbon Fibres
,”
Carbon
,
9
, pp.
645
655
.10.1016/0008-6223(71)90087-X
14.
Curtis
,
G. J.
,
Milne
,
J. M.
, and
Reynolds
,
W. N.
,
1968
, “
Non-Hookean Behaviour of Strong Carbon Fibres
,”
Nature
,
220
, pp.
1024
1025
.10.1038/2201024a0
15.
Da Silva
,
J. L. G.
, and
Johnson
,
D. J.
,
1984
, “
Flexural Studies of Carbon Fibers
,”
J. Mater. Sci.
,
19
, pp.
3201
3210
.10.1007/BF00549805
16.
Hawthorne
,
H. M.
,
1993
, “
On Non-Hookean Behaviour of Carbon Fibres in Bending
,”
J. Mater. Sci.
,
28
, pp.
2351
2535
.10.1007/BF01151688
17.
Furuyama
,
M.
,
Higuchi
,
M.
,
Kubomura
,
K.
,
Sunago
,
H.
,
Jiang
,
H.
, and
Kumar
,
S.
,
1993
, “
Compressive Properties of Single-Filamente Carbon Fibres
,”
J. Mater. Sci.
,
28
, pp.
1611
1616
.10.1007/BF00363356
18.
Oya
,
N.
, and
Johnson
,
D. J.
,
2001
, “
Longitudinal Compressive Behaviour and Microstructure of PAN-Based Carbon Fibres
,”
Carbon
,
39
, pp.
635
645
.10.1016/S0008-6223(00)00147-0
19.
Loidl
,
D.
,
Paris
,
O.
,
Bughammer
,
M.
,
Riekel
,
C.
, and
Peterlik
,
H.
,
2005
, “
Direct Observation of Nanocrystallite Buckling in Carbon Fibers Under Bending Load
,”
Phys. Rev. Lett.
,
95
, p.
225501
.10.1103/PhysRevLett.95.225501
20.
Fukuda
,
H.
,
Yakushijo
,
M.
, and
Wada
,
A.
,
1999
, “
A Loop Test to Measure the Strength of Monofilaments Used for Advanced Composites
,”
Adv. Compos. Mater.
,
8
, pp.
281
291
.10.1163/156855199X00272
21.
Naito
,
K.
,
Tanaka
,
Y.
,
Yang
,
J.-M.
, and
Kagawa
,
Y.
,
2009
, “
Flexural Properties of PAN- and Pitch-Based Carbon Fibers
,
J. Am. Ceram. Soc.
,
92
, pp.
186
192
.10.1111/j.1551-2916.2008.02868.x
22.
Francis
,
W. H.
,
Lake
,
M. S.
, and
Steven Mayes
,
J.
,
2006
, “
A Review of Classical Fiber Microbuckling Analytical Solutions for Use With Elastic Memory Composites
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics, and Materials Conference
,
Newport, RI
, May 1–4, Paper No. AIAA-2006-1764.
23.
Francis
,
W. H.
,
Lake
,
M. S.
,
Schultz
,
M. R.
,
Campbell
,
D.
,
Dunn
,
M.
, and
Qi
,
H. J.
,
2007
, “
Elastic Memory Composite Microbuckling Mechanics: Closed-Form Model With Empirical Correlation
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics, and Materials Conference
,
Honolulu, HI
, April 23–26, Paper No. AIAA-2007-2164.
24.
Melanitis
,
N.
,
Tetlow
,
P. L.
,
Galiotis
,
C.
, and
Smith
,
S. B.
,
1994
, “
Compressional Behaviour of Carbon Fibres. Part II: Modulus Softening
,”
J. Mater. Sci.
,
29
, pp.
786
799
.10.1007/BF00445995
25.
Daniel
,
I. M.
, and
Ishai
,
O.
,
2006
,
Engineering Mechanics of Composite Materials
,
2nd ed.
,
Oxford University Press
,
New York
.
26.
Trustum
,
K.
, and
Jayatilaka
,
A. de S.
,
1979
, “
On Estimating the Weibull Modulus for a Brittle Material
,”
J. Mater. Sci.
14
, pp.
1080
1084
.10.1007/BF00561290
27.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Dover
,
New York
.
28.
Sanford
,
G.
,
Biskner
,
A.
, and
Murphey
,
T.
,
2010
, “
Large Strain Behavior of Thin Unidirectional Composite Flexures
,”
51st AIAA/ASME/ASCE/AHS/ASC Structures
,
Structural Dynamics, and Materials Conference
,
Orlando, FL
, April 12–15, Paper No. AIAA 2010-2698.
You do not currently have access to this content.