We apply Hamilton's principle and model the coupled in-plane and transverse vibrations of high-speed spinning disks, which are fiber-reinforced circumferentially. We search for eigenmodes in the linear regime using a collocation scheme, and compare the mode shapes of composite and isotropic disks. As the azimuthal wavenumber varies, the radial nodes of in-plane waves are remarkably displaced in isotropic disks while they resist such displacements in composite disks. The reverse of this phenomenon happens for transversal waves and the radial nodes move toward the outer disk edge as the azimuthal wavenumber is increased in composite disks. This result is in accordance with the predictions of Nowinski's theory, and therefore, it is independent of the magnitude of the spinning velocity and the mode frequency. Although there are notable differences between the form of governing equations derived from Hamilton's principle and Nowinski's theory, transverse eigenmodes differ a little in the two approaches. We argue that the application of orthotropic composites as the core material of the next generation of hard disk drives, together with an angular velocity controller, can enhance the data access rate.

References

1.
Lamb
,
H.
, and
Southwell
,
R. V.
,
1921
, “
The Vibrations of a Spinning Disk
,”
Proc. R. Soc. London
,
99
, pp.
272
280
.10.1098/rspa.1921.0041
2.
Nowinski
,
J. L.
,
1964
, “
Nonlinear Transverse Vibration of a Spinning Disk
,”
J. Appl. Mech.
,
31
, pp.
72
78
.10.1115/1.3629573
3.
D'Angelo
,
C.
, III
, and
Mote
,
C. D.
, Jr.
,
1993
, “
Natural Frequencies of a Thin Disk, Clamped by Thick Collars With Friction at the Contacting Surfaces, Spinning at High Rotating Speed
,”
J. Sound Vib.
,
168
, pp.
1
14
.10.1006/jsvi.1993.1358
4.
Ono
,
K.
, and
Maeno
,
T.
,
1987
, “
Theoretical and Experimental Investigation on Dynamic Characteristics of a 3.5-Inch Flexible Disk Due to a Point Contact Head
,”
Tribol. Mech. Magn. Storage Syst.
,
3
, pp.
144
151
.
5.
Raman
,
A.
, and
Mote
,
C. D.
, Jr.
,
2001
, “
Experimental Studies on the Non-Linear Oscillations of Imperfect Circular Disks Spinning Near Critical Speed
,”
Int. J. Nonlinear Mech.
,
36
, pp.
291
305
.10.1016/S0020-7462(00)00015-9
6.
Khoshnood
,
A.
, and
Jalali
,
M. A.
,
2008
, “
Normal Oscillatory Modes of Rotating Orthotropic Disks
,”
J. Sound Vib.
,
314
, pp.
147
160
.10.1016/j.jsv.2008.01.001
7.
Baddour
,
N.
, and
Zu
,
J. W.
,
2001
, “
A Revisit of Spinning Disk Models, Part I: Derivation of Equations of Motion
,”
Appl. Math. Model.
,
25
, pp.
541
559
.10.1016/S0307-904X(00)00065-2
8.
Baddour
,
N.
, and
Zu
,
J. W.
,
2001
, “
A Revisit of Spinning Disk Models, Part II: Linear Transverse Vibrations
,”
Appl. Math. Model.
,
25
, pp.
561
578
.10.1016/S0307-904X(00)00066-4
9.
Chen
,
J.
,
2011
, “
On the Linearization of the Equations of Motion of a Rotating Disk
,”
Appl. Math. Model.
,
35
, pp.
392
397
.10.1016/j.apm.2010.07.003
10.
Nayfeh
,
A. H.
,
Jilani
,
A.
, and
Chin
,
C. M.
,
1998
, “
Transverse Vibrations of a Centrally Clamped Rotating Circular Disk
,”
Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference
,
Reston, VA
, Vol.
1
, pp.
302
312
.
11.
Raman
,
A.
, and
Mote
,
C. D.
, Jr.
,
2001
, “
Effects of Imperfection on the Non-Linear Oscillations of Circular Plates Spinning Near Critical Speed
,”
Int. J. Nonlinear Mech.
,
36
, pp.
261
289
.10.1016/S0020-7462(00)00014-7
12.
Jana
,
A.
, and
Raman
,
A.
,
2005
, “
Nonlinear Dynamics of a Flexible Spinning Disc Coupled to a Precompressed Spring
,”
Nonlinear Dyn.
,
40
(
1
), pp.
1
20
.10.1007/s11071-005-5183-8
13.
Angoshtari
,
A.
, and
Jalali
,
M. A.
,
2007
, “
On the Existence of Chaotic Circumferential Waves in Spinning Disks
,”
Chaos
,
17
(
2
), p.
023120
.10.1063/1.2735813
14.
Jalali
,
M. A.
, and
Angoshtari
,
A.
,
2006
, “
Phase Space Structure of Spinning Disks
,”
Int. J. Nonlinear Mech.
,
41
(
5
), pp.
726
735
.10.1016/j.ijnonlinmec.2006.04.005
15.
Ambati
,
G.
,
Bell
,
J. F. W.
, and
Sharp
,
J. C. K.
,
1976
, “
In-Plane Vibrations of Annular Rings
,”
J. Sound Vib.
,
47
(
3
), pp.
415
432
.10.1016/0022-460X(76)90951-2
16.
Chen
,
J. S.
, and
Jhu
,
J. L.
,
1996
, “
On the In-Plane Vibration and Stability of a Spinning Annular Disk
,”
J. Sound Vib.
,
195
(
4
), pp.
585
593
.10.1006/jsvi.1996.0447
17.
Farag
,
N. H.
, and
Pan
,
J.
, “
Modal Characteristics of In-Plane Vibration of Circular Plates
,”
J. Acoust. Soc. Am.
,
113
(
4
), pp.
1935
1946
.10.1121/1.1553456
18.
Park
,
C. I.
,
2008
, “
Frequency Equation for the In-Plane Vibration of a Clamped Circular Plate
,”
J. Sound Vib.
,
313
, pp.
325
333
.10.1016/j.jsv.2007.11.034
19.
Baddour
,
N.
, and
Zu
,
J. W.
,
2000
, “
General Solution of the Forced In-Plane Vibration Problem for a Spinning Disk
,”
Trans. CSME
,
24
(
1B
), pp.
307
321
.
20.
Baddour
,
N.
, and
Zu
,
J. W.
,
2007
, “
Nonlinearly Coupled In-Plane and Transverse Vibrations of a Spinning Disk
,”
Appl. Math. Model.
,
31
, pp.
54
77
.10.1016/j.apm.2005.08.004
21.
Baddour
,
N.
, and
Zu
,
J. W.
,
2006
, “
Time-Averaged Canonical Perturbation of Nonlinear Vibrations of a Spinning Disk
,”
Nonlinear Anal.: Real World Appl.
,
7
(
3
), pp.
319
340
.10.1016/j.nonrwa.2005.03.004
22.
Tahani
,
M.
,
Nosier
,
A.
, and
Zebarjad
,
S. M.
,
2005
, “
Deformation and Stress Analysis of Circumferentially Fiber-Reinforced Composite Disks
,”
Int. J. Solids Struct.
,
42
, pp.
2741
2754
.10.1016/j.ijsolstr.2004.09.041
You do not currently have access to this content.