The cold-drawn, programmed shape memory polymer (SMP) fibers show excellent stress recovery property, which promotes their application as mechanical actuators in smart material systems. A full understanding of the thermomechanical-damage responses of these fibers is crucial to minimize the trial-and-error manufacturing processes of these material systems. In this work, a multiscale viscoplastic-viscodamage theory is developed to predict the cyclic mechanical responses of SMP fibers. The proposed viscoplastic theory is based on the governing relations for each of the individual microconstituents and establishes the microscale state of the stress and strain in each of the subphases. These microscale fields are then averaged through the micromechanics framework to demonstrate the macroscale constitutive mechanical behavior. The cyclic loss in the functionality of the SMP fibers is interpreted as the damage process herein, and this cyclic loss of stress recovery property is calibrated to identify the state of the damage. The continuum damage mechanics (CDM) together with a thermodynamic consistent viscodamage theory is incorporated to simulate the damage process. The developed coupled viscoplastic-viscodamage theory provides an excellent correlation between the experimental and simulation results. The cyclic loading-damage analysis in this work relies on the underlying physical facts and accounts for the microstructural changes in each of the micro constituents. The established framework provides a well-structured method to capture the cyclic responses of the SMP fibers, which is of utmost importance for designing the SMP fiber-based smart material systems.

References

References
1.
Ayoub
,
G.
,
Zaïri
,
F.
,
Fréderix
,
C.
,
Gloaguen
,
J. M.
,
Naït-Abdelaziz
,
M.
,
Seguela
,
R.
, and
Lefebvre
,
J. M.
,
2011
, “
Effects of Crystal Content on the Mechanical Behaviour of Polyethylene Under Finite Strains: Experiments and Constitutive Modelling
,”
Int. J. Plast.
,
27
,
pp.
492
511
.10.1016/j.ijplas.2010.07.005
2.
Qi
,
H. J.
, and
Boyce
,
M. C.
,
2005
, “
Stress–Strain Behavior of Thermoplastic Polyurethanes
,”
Mech. Mater.
,
37
(
8
),
pp.
817
839
.10.1016/j.mechmat.2004.08.001
3.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
,
2008
, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
,
56
(
5
),
pp.
1730
1751
.10.1016/j.jmps.2007.12.002
4.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
, and
Gloaguen
,
J. M.
,
2010
, “
Modelling Large Deformation Behaviour Under Loading-Unloading of Semicrystalline Polymers: Application to a High Density Polyethylene
,”
Int. J. Plast.
,
26
(
3
),
pp.
329
347
.10.1016/j.ijplas.2009.07.005
5.
Srivastava
,
V.
,
Chester
,
S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
,
2010
,
A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition
,”
Int. J. Plast.
,
26
(
8
),
pp.
1138
1182
.10.1016/j.ijplas.2010.01.004
6.
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2010
, “
Thermally Actuated Shape-Memory Polymers: Experiments, Theory, and Numerical Simulations
,”
J. Mech. Phys. Solids
,
58
(
8
),
pp.
1100
1124
.10.1016/j.jmps.2010.04.004
7.
Westbrook
,
K. K.
,
Kao
,
P. H.
,
Castro
,
F.
,
Ding
,
Y.
, and
Qi
,
H. J.
,
2011
, “
A 3D Finite Deformation Constitutive Model for Amorphous Shape Memory Polymers: A Multi-Branch Modeling Approach for Nonequilibrium Relaxation Processes
,”
Mech. Mater.
,
43
(
12
),
pp.
853
869
.10.1016/j.mechmat.2011.09.004
8.
Yakacki
,
C. M.
,
Nguyen
,
T. D.
,
Likos
,
R.
,
Lamell
,
R.
,
Guigou
,
D.
, and
Gall
,
K.
,
2011
, “
Impact of Shape-Memory Programming on Mechanically-Driven Recovery in Polymers
,”
Polymer
,
52
(
21
),
pp.
4947
4954
.10.1016/j.polymer.2011.08.027
9.
Li
,
G.
, and
John
,
M.
,
2008
,
A Self-Healing Smart Syntactic Foam Under Multiple Impacts
,”
Compos. Sci. Technol.
,
68
(
15–16
),
pp.
3337
3343
.10.1016/j.compscitech.2008.09.009
10.
Li
,
G.
, and
Nettles
,
D.
,
2010
, “
Thermomechanical Characterization of a Shape Memory Polymer Based Self-Repairing Syntactic Foam
,”
Polymer
,
51
(
3
),
pp.
755
762
.10.1016/j.polymer.2009.12.002
11.
Li
,
G.
, and
Shojaei
,
A.
, 2012, “
A Viscoplastic Theory of Shape Memory Polymer Fibres With Application to Self-Healing Materials
,”
Proc. R. Soc. London, Ser. A
,
(in press)
.
12.
Li
,
G.
, and
Uppu
,
N.
,
2010
, “
Shape Memory Polymer Based Self-Healing Syntactic Foam: 3-D Confined Thermomechanical Characterization
,”
Compos. Sci. Technol.
,
70
(
9
),
pp.
1419
1427
.10.1016/j.compscitech.2010.04.026
13.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2011
, “
A Thermodynamic Consistent Damage and Healing Model for Self Healing Materials
,”
Int. J. Plast.
,
27
(
7
),
pp.
1025
1044
.10.1016/j.ijplas.2010.11.002
14.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2012
, “
A Generalized Coupled Viscoplastic–Viscodamage–Viscohealing Theory for Glassy Polymers
,”
Int. J. Plast.
,
28
(
1
),
pp.
21
45
.10.1016/j.ijplas.2011.05.012
15.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
,
Li
,
G.
, and
Kattan
,
P.
,
2012
, “
Continuum Damage-Healing Mechanics With Introduction to New Healing Variables
,”
Int. J. Damage Mech.
,
21
(
3
),
pp.
391
414
.10.1177/1056789510397069
16.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
,
Li
,
G.
, and
Kattan
,
P. I.
,
2012
, “
A Theory of Anisotropic Healing and Damage Mechanics of Materials
,”
Proc. R. Soc. London, Ser. A
,
468
(
2137
),
pp.
163
183
.10.1098/rspa.2011.0326
17.
Xu
,
W.
, and
Li
,
G.
,
2010
, “
Constitutive Modeling of Shape Memory Polymer Based Self-Healing Syntactic Foam
,”
Int. J. Solids Struct.
,
47
(
9
),
pp.
1306
1316
.10.1016/j.ijsolstr.2010.01.015
18.
White
,
S. R.
,
Sottos
,
N. R.
,
Geubelle
,
P. H.
,
Moore
,
J. S.
,
Kessler
,
M. R.
,
Sriram
,
S. R.
,
Brown
,
E. N.
, and
Viswanathan
,
S.
,
2001
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
),
pp.
794
797
.10.1038/35057232
19.
Toohey
,
K. S.
,
Sottos
,
N. R.
,
Lewis
,
J. A.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2007
, “
Self-Healing Materials With Microvascular Networks
,”
Nature Mater.
,
6
(
8
),
pp.
581
585
.10.1038/nmat1934
20.
Kirkby
,
E. L.
,
Michaud
,
V. J.
,
Månson
,
J. A. E.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2009
, “
Performance of Self-Healing Epoxy With Microencapsulated Healing Agent and Shape Memory Alloy Wires
,”
Polymer
,
50
(
23
),
pp.
5533
5538
.10.1016/j.polymer.2009.05.014
21.
Zako
,
M.
, and
Takano
,
N.
,
1999
, “
Intelligent Material Systems Using Epoxy Particles to Repair Microcracks and Delamination Damage in GFRP
,”
J. Intell. Mater. Syst. Struct.
,
10
(
10
),
pp.
836
841
.
22.
Nji
,
J.
, and
Li
,
G.
,
2010
, “
A Biomimic Shape Memory Polymer Based Self-Healing Particulate Composite
,”
Polymer
,
51
(
25
),
pp.
6021
6029
.10.1016/j.polymer.2010.10.021
23.
Nji
,
J.
, and
Li
,
G.
,
2010
, “
A Self-Healing 3D Woven Fabric Reinforced Shape Memory Polymer Composite for Impact Mitigation
,”
Smart Mater. Struct.
,
19
(
3
),
pp.
1
9
.10.1088/0964-1726/19/3/035007
24.
Meng
,
Q. H.
, and
Hu
,
J. L.
,
2008
, “
The Influence of Heat Treatment on Properties of Shape Memory Fibers: I. Crystallinity, Hydrogen Bonding and Shape Memory Effect
,”
J. Appl. Polym. Sci.
,
109
,
pp.
2616
2623
.10.1002/app.28363
25.
Clough
,
S. B.
, and
Schneider
,
N. S.
,
1968
, “
Structural Studies on Urethane Elastomers
,”
J. Macromol. Sci., Phys.
,
2
(
4
),
pp.
553
566
.10.1080/00222346808212458
26.
Clough
,
S. B.
,
Schneider
,
N. S.
, and
King
,
A. O.
,
1968
, “
Small-Angle X-Ray Scattering From Polyurethane Elastomers
,”
J. Macromol. Sci., Phys.
,
2
(
4
),
pp.
641
648
.10.1080/00222346808212463
27.
Ferguson
,
J.
,
Hourston
,
D. J.
,
Meredith
,
R.
, and
Patsavoudis
,
D.
,
1972
, “
Mechanical Relaxations in a Series of Polyurethanes With Varying Hard to Soft Segment Ratio
,”
Eur. Polym. J.
,
8
(
3
),
pp.
369
383
.10.1016/0014-3057(72)90102-4
28.
Ferguson
,
J.
, and
Patsavoudis
,
D.
,
1972
, “
Chemical Structure-Physical Property Relationships in Polyurethane Elastomeric Fibres; Property Variations in Polymers Containing High Hard Segment Concentrations
,”
Eur. Polym. J.
,
8
(
3
),
pp.
385
396
.10.1016/0014-3057(72)90103-6
29.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
),
pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
30.
Chaboche
,
J. L.
,
Kruch
,
S.
,
Maire
,
J. F.
, and
Pottier
,
T.
,
2001
, “
Towards a Micromechanics Based Inelastic and Damage Modeling of Composites
,”
Int. J. Plast.
,
17
(
4
),
pp.
411
439
.10.1016/S0749-6419(00)00056-5
31.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
(
1226
),
pp.
376
396
.10.1098/rspa.1957.0133
32.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
,
1996
, “
Overall Properties of Elastic-Viscoplastic Periodic Composites
,”
Int. J. Plast.
,
12
(
2
),
pp.
163
190
.10.1016/S0749-6419(96)00002-2
33.
Kruch
,
S.
, and
Chaboche
,
J. L.
,
2011
, “
Multi-Scale Analysis in Elasto-Viscoplasticity Coupled With Damage
,”
Int. J. Plast.
,
27
(
12
),
pp.
2026
2039
.10.1016/j.ijplas.2011.03.007
34.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam
.
35.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2009
, “
A Thermo-mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part II: Applications
,”
Int. J. Plast.
,
25
(
8
),
pp.
1495
1539
.10.1016/j.ijplas.2008.11.005
36.
Anand
,
L.
, and
Ames
,
N. M.
,
2006
, “
On Modeling the Micro-Indentation Response of an Amorphous Polymer
,”
Int. J. Plast.
,
22
(
6
),
pp.
1123
1170
.10.1016/j.ijplas.2005.07.006
37.
Anand
,
L.
,
Ames
,
N. M.
,
Srivastava
,
V.
, and
Chester
,
S. A.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part I: Formulation
,”
Int. J. Plast.
,
25
(
8
),
pp.
1474
1494
.10.1016/j.ijplas.2008.11.004
38.
Naghdi
,
P. M.
, and
Trapp
,
J. A.
,
1975
, “
Restrictions on Constitutive Equations of Finitely Deformed Elastic-Plastic Materials
,”
Q. J. Mech. Appl. Math.
,
28
(
1
),
pp.
25
46
.10.1093/qjmam/28.1.25
39.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1971
, “
Some Remarks on Elastic-Plastic Deformation at Finite Strain
,”
Int. J. Eng. Sci.
,
9
(
12
),
pp.
1219
1229
.10.1016/0020-7225(71)90086-3
40.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
A General Theory of an Elastic-Plastic Continuum
,”
Arch. Ration. Mech. Anal.
,
18
(
4
),
pp.
251
281
.10.1007/BF00251666
41.
Hansen
,
N. R.
, and
Schreyer
,
H. L.
,
1994
, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage
,”
Int. J. Solids Struct.
,
31
(
3
),
pp.
359
389
.10.1016/0020-7683(94)90112-0
42.
Kapoor
,
R.
, and
Nemat-Nasser
,
S.
,
1998
, “
Determination of Temperature Rise During High Strain Rate Deformation
,”
Mech. Mater.
,
27
(
1
),
pp.
1
12
.10.1016/S0167-6636(97)00036-7
43.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Liu
,
M.
,
1998
, “
Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum
,”
Acta Mater.
,
46
(
4
),
pp.
1307
1325
.10.1016/S1359-6454(97)00746-5
44.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2011
, “
On the Prediction of Fatigue Crack Initiation in Rolling/Sliding Contacts With Provision for Loading Sequence Effect
,”
Tribol. Int.
,
44
(
12
),
pp.
1620
1628
.10.1016/j.triboint.2011.05.017
45.
Aghdam
,
A. B.
,
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2012
, “
On the Fretting Crack Nucleation With Provision for Size Effect
,”
Tribol. Int.
,
47
,
pp.
32
43
.10.1016/j.triboint.2011.10.001
46.
Lemaitre
,
J.
, and
Dufailly
,
J.
,
1987
, “
Damage Measurements
,”
Eng. Fract. Mech.
,
28
(
5–6
),
pp.
643
661
.10.1016/0013-7944(87)90059-2
47.
Simo
,
J. C.
and
Hughes
,
T. J. R.
,
1997
,
Computational Inelasticity
,
Springer
,
New York
.
48.
Nemat-Nasser
,
S.
,
2006
,
Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials
,
Cambridge University Press
,
Cambridge, England
.
49.
Simo
,
J. C.
, and
Ortiz
,
M.
,
1985
, “
A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
2
),
pp.
221
245
.10.1016/0045-7825(85)90061-1
50.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1989
, “
Plastic Flow in Oriented Glassy Polymers
,”
Int. J. Plast.
,
5
(
6
),
pp.
593
615
.10.1016/0749-6419(89)90003-X
51.
Anand
,
L.
,
1979
, “
On H. Hencky's Approximate Strain-Energy Function for Moderate Deformations
,”
ASME J. Appl. Mech.
,
46
(
1
),
pp.
78
82
.10.1115/1.3424532
52.
Ping
,
P.
,
Wang
,
W.
,
Chen
,
X.
, and
Jing
,
X.
,
2005
, “
Poly(ɛ-Caprolactone) Polyurethane and Its Shape-Memory Property
,”
Biomacromolecules
,
6
(
2
),
pp.
587
592
.10.1021/bm049477j
53.
Li
,
G.
, and
Xu
,
W.
,
2011
, “
Thermomechanical Behavior of Thermoset Shape Memory Polymer Programmed by Cold-Compression: Testing and Constitutive Modeling
,”
J. Mech. Phys. Solids
,
59
(
6
),
pp.
1231
1250
.10.1016/j.jmps.2011.03.001
54.
Wang
,
T. T.
,
1973
, “
Morphology and Mechanical Properties of Crystalline Polymers. I. Transcrystalline Polyethylene
,”
J. Appl. Phys.
,
44
(
5
),
pp.
2218
2224
.10.1063/1.1662540
55.
Stevenson
,
A.
,
1995
, “
Effect of Crystallization on the Mechanical Properties of Elastomers Under Large Deformation
,”
Current Research in the Thermo-Mechanics of Polymers in the Rubbery-Glassy Range
,
ASME
,
New York
.
56.
Shojaei
,
A.
, and
Li
,
G.
,
2012
, “
Viscoplasticity Analysis of Semicrystalline Polymers: A Multiscale Approach Within Micromechanics Framework
,”
Int. J. Plast.
, (in press).10.1016/j.ijplas.2012.09.014
57.
Argon
,
A. S.
,
1973
, “
A Theory for the Low-Temperature Plastic Deformation of Glassy Polymers
,”
Philos. Mag.
,
28
(
4
),
pp.
839
865
.10.1080/14786437308220987
58.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Quintus-Bosz
,
H.
,
1993
, “
Effects of Initial Anisotropy on the Finite Strain Deformation Behavior of Glassy Polymers
,”
Int. J. Plast.
,
9
(
7
),
pp.
783
811
.10.1016/0749-6419(93)90052-R
59.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
),
pp.
389
412
.10.1016/0022-5096(93)90013-6
60.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
,
9
(
6
),
pp.
697
720
.10.1016/0749-6419(93)90034-N
61.
Boyce
,
M. C.
and
Arruda
,
E. M.
,
1990
, “
An Experimental and Analytical Investigation of the Large Strain Compressive and Tensile Response of Glassy Polymers
,”
Polym. Eng. Sci.
,
30
(
20
),
pp.
1288
1298
.10.1002/pen.760302005
62.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers. Part II: Numerical Simulation of Hydrostatic Extrusion
,”
Mech. Mater.
,
7
(
1
),
pp.
35
47
.10.1016/0167-6636(88)90004-X
63.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
),
pp.
15
33
.10.1016/0167-6636(88)90003-8
64.
Cohen
,
A.
,
1991
, “
A Pade' Approximant to the Inverse Langevin Function
,”
Rheol. Acta
,
30
,
pp.
270
273
.10.1007/BF00366640
65.
Parks
,
D. M.
, and
Ahzi
,
S.
,
1990
, “
Polycrystalline Plastic Deformation and Texture Evolution for Crystals Lacking Five Independent Slip Systems
,”
J. Mech. Phys. Solids
,
38
(
5
),
pp.
701
724
.10.1016/0022-5096(90)90029-4
66.
Lee
,
B. J.
,
Parks
,
D. M.
, and
Ahzi
,
S.
,
1993
, “
Micromechanical Modeling of Large Plastic Deformation and Texture Evolution in Semi-Crystalline Polymers
,”
J. Mech. Phys. Solids
,
41
(
10
),
pp.
1651
1687
.10.1016/0022-5096(93)90018-B
67.
Hutchinson
,
J. W.
,
1976
, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc. London, Ser. A
,
348
(
1652
),
pp.
101
127
.10.1098/rspa.1976.0027
68.
Asaro
,
R. J.
,
1979
, “
Geometrical Effects in the Inhomogeneous Deformation of Ductile Single Crystals
,”
Acta Metall.
,
27
(
3
),
pp.
445
453
.10.1016/0001-6160(79)90036-1
69.
Asaro
,
R. J.
, and
Rice
,
J. R.
,
1977
, “
Strain Localization in Ductile Single Crystals
,”
J. Mech. Phys. Solids
,
25
(
5
),
pp.
309
338
.10.1016/0022-5096(77)90001-1
70.
Negahban
,
M.
,
1997
, “
Thermodynamic Modeling of the Thermomechanical Effects of Polymer Crystallization: A General Theoretical Structure
,”
Int. J. Eng. Sci.
,
35
(
3
),
pp.
277
298
.10.1016/S0020-7225(96)00078-X
71.
Negahban
,
M.
,
Wineman
,
A. S.
, and
Ma
,
R.-J.
,
1993
, “
Simulation of Mechanical Response in Polymer Crystallization
,”
Int. J. Eng. Sci.
,
31
(
1
),
pp.
93
113
.10.1016/0020-7225(93)90068-6
72.
Nemat-Nasser
,
S.
,
1979
, “
Decomposition of Strain Measures and Their Rates in Finite Deformation Elastoplasticity
,”
Int. J. Solids Struct.
,
15
(
2
),
pp.
155
166
.10.1016/0020-7683(79)90019-2
73.
Hershey
,
A. V.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystal
,”
ASME J. Appl. Mech.
,
21
,
pp.
236
241
.
74.
Freed
,
A. D.
, and
Walker
,
K. P.
,
1990
, “
Steady-State and Transient Zener Parameters in Viscoplasticity: Drag Strength Versus Yield Strength
,”
Appl. Mech. Rev.
,
43
(
5S
),
pp.
S328
S337
.10.1115/1.3120836
75.
Deliktas
,
B.
,
Voyiadjis
,
G. Z.
, and
Palazotto
,
A. N.
,
2009
, “
Simulation of Perforation and Penetration in Metal Matrix Composite Materials Using Coupled Viscoplastic Damage Model
,”
Composites, Part B
,
40
(
6
),
pp.
434
442
.10.1016/j.compositesb.2009.04.019
76.
Voyiadjis
,
G. Z.
and
Deliktas
,
B.
,
2000
, “
A Coupled Anisotropic Damage Model for the Inelastic Response of Composite Materials
,”.
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
),
pp.
159
199
.10.1016/S0045-7825(99)00218-2
77.
Voyiadjis
,
G. Z.
,
Deliktas
,
B.
, and
Palazotto
,
A. N.
,
2009
, “
Thermodynamically Consistent Coupled Viscoplastic Damage Model for Perforation and Penetration in Metal Matrix Composite Materials
,”
Composites, Part B
,
40
(
6
),
pp.
427
433
.10.1016/j.compositesb.2009.01.008
78.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, England
.
79.
Lemaitre
,
J.
,
1985
, “
Coupled Elasto-Plasticity and Damage Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
),
pp.
31
49
.10.1016/0045-7825(85)90026-X
80.
Echle
,
R.
, and
Voyiadjis
,
G. Z.
,
1999
, “
Simulation of Damage Evolution in a Uni-Directional Titanium Matrix Composite Subjected to High Cycle Fatigue
,”
Int. J. Fatigue
,
21
(
9
),
pp.
909
923
.10.1016/S0142-1123(99)00082-1
81.
Voyiadjis
,
G. Z.
, and
Echle
,
R.
,
1998
, “
High Cycle Fatigue Damage Evolution in Uni-Directional Metal Matrix Composites Using a Micro-Mechanical Approach
,”
Mech. Mater.
,
30
(
2
),
pp.
91
110
.10.1016/S0167-6636(98)00040-4
82.
Shojaei
,
A.
,
Eslami
,
M.
, and
Mahbadi
,
H.
,
2010
, “
Cyclic Loading of Beams Based on the Chaboche Model
,”
Int. J. Mech. Mater. Des.
,
6
(
3
),
pp.
217
228
.10.1007/s10999-010-9131-5
83.
Horgan
,
C. O.
,
Ogden
,
R. W.
, and
Saccomandi
,
G.
,
2004
, “
A Theory of Stress Softening of Elastomers Based on Finite Chain Extensibility
,”
Proc. R. Soc. London, Ser. A
,
460
(
2046
),
pp.
1737
1754
.10.1098/rspa.2003.1248
84.
Govindjee
,
S.
, and
Simo
,
J.
,
1992
, “
Transition From Micro-Mechanics to Computationally Efficient Phenomenology: Carbon Black Filled Rubbers Incorporating Mullins' Effect
,”
J. Mech. Phys. Solids
,
40
(
1
),
pp.
213
233
.10.1016/0022-5096(92)90324-U
85.
Govindjee
,
S.
, and
Simo
,
J.
,
1991
,
A Micro-Mechanically Based Continuum Damage Model for Carbon Black-Filled Rubbers Incorporating Mullins' Effect
,”
J. Mech. Phys. Solids
,
39
(
1
),
pp.
87
112
.10.1016/0022-5096(91)90032-J
86.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pister
,
K. S.
,
1985
, “
Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto-Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
),
pp.
177
208
.10.1016/0045-7825(85)90033-7
87.
Li
,
G.
,
Meng
,
H.
, and
Hu
,
J.
, 2012, “
Healable Thermoset Polymer Composite Embedded With Stimuli-Responsive Fibers
,”
J. R. Soc., Interface
,
(submitted)
.
You do not currently have access to this content.