This paper proposes the use of a one-dimensional (1D) structural theory to analyze thin walled structures with longitudinal and transverse stiffeners. The 1D theory has hierarchical features and it is based on the unified formulation (UF) which has recently been introduced by Carrera. UF permits us to introduce any order of expansion (N) for the unknown displacements over the cross section by preserving the compact form of the related governing equations. In this paper the latter are written in terms of finite element matrices. The same 1D structural theory is used to model a given thin-walled structure composed of stiffened (longitudinal and transverse) and unstiffened parts. It is shown that an appropriate choice of N permits us to accurately describe strain/stress fields of both transverse and longitudinal stiffeners. Comparisons with available results from open literature highlight the efficiency of the proposed model. Moreover, a set of sample problems are proposed and compared with plate/shell formulations from a commercial finite element (FE) software.

References

1.
Argiris
,
J. M.
, and
Kelsey
,
S.
,
1960
,
Energy Theorems and Structural Analysis
,
Butterworths
.
2.
Bruhn
,
E. F.
,
1973
,
Analysis and Design of Flight Vehicle Structures
,
Tri-State Offset Company
.
3.
Mustafa
,
B. A. J.
, and
Ali
,
R.
,
1987
, “
Prediction of Natural Frequency of Vibration of Stiffened Cylindrical Shell and Orthogonally Stiffened Curved Panels
,”
J. Sound Vib.
,
113
(
2
),
pp.
317
327
.10.1016/S0022-460X(87)80218-3
4.
Langley
,
R. S.
,
1992
, “
A Dynamic Stiffness Technique for the Vibration Analysis of Stiffened Shell Structures
,”
J. Sound Vib.
,
156
(
3
),
pp.
521
540
.10.1016/0022-460X(92)90742-G
5.
Hoppman
,
W. H.
,
1958
, “
Some Characteristics of the Flexural Vibrations of Orthogonally Stiffened Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
30
,
pp.
77
83
.10.1121/1.1909392
6.
Mecitoglu
,
Z.
, and
Dokmeci
,
C.
,
1990
, “
Vibration Analysis of Stiffened Circular Thin Shells
,”
Proceedings of the International Congress of Aeronautical Sciences Conference ICAS ’90
.
7.
Fisher
,
L.
,
1954
, “
Design of Cylindrical Shells With Edge Beams,” ACI J.
,
274
,
pp.
481
488
.
8.
Gibson
,
J. E.
,
1968
,
The Design of Shell Roofs
,
EFN Spon Ltd
,
London
.
9.
Scordelis
,
A. C.
, and
Lo
,
K. S.
,
1964
, “
Design of Cylindrical Shells With Edge Beams
,”
ACI J.
,
61
,
pp.
539
561
.
10.
Kohnke
,
P. C.
, and
Schnobrich
,
W. C.
,
1972
, “
Analysis of Eccentrically Stiffened Cylindrical Shells
,”
ASCE J. Struct. Div.
,
98
(
7
),
pp.
1493
1510
.
11.
Ferguson
,
G. H.
, and
Clark
,
R. D.
,
1979
, “
A Variable Thickness, Curved Beam and Shell Stiffening Element With Shear Deformations
,”
Int. J. Numer. Method Eng.
,
4
,
pp.
581
592
. 10.1002/nme.1620140409
12.
Bouberguig
,
A.
, and
Jirousek
,
J.
,
1980
, “
Calcul par elements finis des coques nervurees et precontraintes
,”
Proceedings of the International Congress of Aeronautic 2nd International Congress for Numerical Methods for Engineering Sciences Conference ICAS ’90
.
13.
Assan
,
A. E.
,
1999
, “
Analysis of Multiple Stiffened Barrel Shell Structures by Strain-Based Finite Elements
,”
Thin-Walled Struct.
,
35
,
pp.
233
253
.10.1016/S0263-8231(99)00030-0
14.
Buermann
,
P.
,
Rolfes
,
R.
,
Tessmer
,
J.
, and
Schagerl
,
M.
,
2006
, “
A Semi-Analytical Model for Local Post-Buckling Analysis of Stringer- and Frame-Stiffened Cylindrical Panels
,”
Thin-Walled Struct.
,
44
,
pp.
102
114
.10.1016/j.tws.2005.08.010
15.
Timoshenko
,
S. P.
, and
Woinowski-Krieger
,
S.
,
1970
,
Theory of Plate and Shells
,
McGraw-Hill
,
New York
.
16.
Sokolnikoff
,
I. S.
,
1956
,
Mathematical Theory of Elasticity
,
McGraw-Hill
,
New York
.
17.
El
Fatmi
,
R.
,
2007
, “
Non-Uniform Warping Including the Effects of Torsion and Shear Forces. Part II: Analytical and Numerical Applications
,”
Int. J. Solids Struct.
,
44
(
18
19
),
pp.
5930
5952
.10.1016/j.ijsolstr.2007.02.005
18.
El
Fatmi
,
R.
,
2007
, “
Non-Uniform Warping Including the Effects of Torsion and Shear Forces. Part I: A General Beam Theory
,”
Int. J. Solids Struct.
,
44
(
18–19
),
pp.
5912
5929
.10.1016/j.ijsolstr.2007.02.006
19.
Berdichevsky
,
V. L.
,
Armanios
,
E.
, and
Badir
,
A.
,
1992
, “
Theory of Anisotropic Thin-Walled Closed-Cross-Section Beams
,”
Composites Eng.
,
2
(
5–7
),
pp.
411
432
.10.1016/0961-9526(92)90035-5
20.
Volovoi
,
V. V.
, and
Hodges
,
D. H.
,
2000
, “
Theory of Anisotropic Thin-Walled Beams
,”
J. Appl. Mech.
,
67
,
pp.
453
459
.10.1115/1.1312806
21.
Yu
,
W.
,
Volovoi
,
V. V.
,
Hodges
,
D. H.
, and
Hong
,
X.
,
2002
, “
Validation of the Variational Asymptotic Beam Sectional Analysis (VABS)
,”
AIAA J.
,
40
,
pp.
2105
2113
.10.2514/2.1545
22.
Schardt
,
R.
,
1966
, “
Eine Erweiterung der Technischen Biegetheorie zur Berechnung Prismatischer Faltwerke
,”
Der Stahlbau
,
35
,
pp.
161
171
.
23.
Schardt
,
R.
,
1989
,
Verallgemeinerte Technische Biegetheorie
,
Springer-Verlag
,
Berlin
.
24.
Silvestre
,
N.
, and
Camotim
,
D.
,
2002
, “
First-Order Generalised Beam Theory for Arbitrary Orthotropic Materials
,”
Thin-Walled Struct.
,
40
(
9
),
pp.
791
820
.10.1016/S0263-8231(02)00026-5
25.
Carrera
,
E.
,
1995
, “
A Class of Two Dimensional Theories for Multilayered Plates Analysis
,”
Atti Accademia delle Scienze di Torino, Memorie Scienze Fisiche
,
19–20
,
pp.
49
87
.
26.
Carrera
,
E.
,
2002
, “
Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells
,”
Arch. Comput. Methods Eng.
,
9
(
2
),
pp.
87
140
.10.1007/BF02736649
27.
Carrera
,
E.
,
2003
, “
Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessment and Benchmarking
,”
Arch. Comput. Methods Eng.
,
10
(
3
),
pp.
216
296
.10.1007/BF02736224
28.
Carrera
,
E.
, and
Giunta
,
G.
,
2010
, “
Refined Beam Theories Based on a Unified Formulation
,”
Int. J. Appl. Mech.
,
2
(
1
),
pp.
117
143
.10.1142/S1758825110000500
29.
Carrera
,
E.
,
Giunta
,
G.
,
Nali
,
P.
, and
Petrolo
,
M.
,
2010
, “
Refined Beam Elements With Arbitrary Cross-Section Geometries
,”
Comput. Struct.
,
88
(
5–6
),
pp.
283
293
.10.1016/j.compstruc.2009.11.002
30.
Carrera
,
E.
,
Petrolo
,
M.
, and
Zappino
,
E.
,
2012
, “
Performance of CUF Approach to Analyze the Structural Behavior of Slender Bodies
,”
J. Struct. Eng.
,
138
,
pp.
285
297
.10.1061/(ASCE)ST.1943-541X.0000402
31.
Carrera
,
E.
,
Petrolo
,
M.
, and
Nali
,
P.
,
2011
, “
Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams With Arbitrary Section
,”
Shock Vib.
,
18
(
3
),
pp.
485
502
. 10.3233/SAV-2010-0528
32.
Carrera
,
E.
, and
Petrolo
,
M.
,
2012
, “
Refined Beam Elements With Only Displacement Variables and Plate/Shell Capabilities
,”
Meccanica
,
47
(
3
),
pp.
537
556
.10.1007/s11012-011-9466-5
33.
Carrera
,
E.
, and
Petrolo
,
M.
,
2011
, “
On the Effectiveness of Higher-Order Terms in Refined Beam Theories
,”
J. Appl. Mech.
,
78
(
2
), p.
021013
.10.1115/1.4002207
34.
Tsai
,
S. W.
,
1988
,
Composites Design
, 4th ed.,
Think Composites
,
Dayton, OH
.
35.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells. Theory and Analysis
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
36.
Bathe
,
K.
,
1996
,
Finite Element Procedure
,
Prentice-Hall, Upper Saddle River, NJ
.
37.
Vlasov
,
V. Z.
,
1961
,
Thin-Walled Elastic Beams
,
Israel Program for Scientific Translations, Jerusalem
.
38.
Kim
,
N. I.
, and
Kim
,
M. Y.
,
2005
, “
Exact Dynamic/Static Stiffness Matrices of Non-Symmetric Thin-Walled Beams Considering Coupled Shear Deformation Effects
,”
Thin-Walled Struct.
,
43
,
pp.
701
734
.10.1016/j.tws.2005.01.004
You do not currently have access to this content.