The present study deals with the derivation of an exact solution for the problem of obtaining the natural frequencies of the vibration of circular plates weakened along an internal concentric circle due to the presence of a radial crack and elastically restrained along the outer edge of the plate against translation. The frequencies of the circular plates are computed for varying values of the elastic translational restraint, the radius of the radial crack, and the extent of the weakening duly simulated by considering the radial crack as a radial elastic rotational restraint on the plate. The results for the first six modes of the plate vibrations are computed. The effects of the elastic edge restraint, the radius of the weakened circle, and the extent of the weakening represented by an elastic rotational restraint on the vibration behavior of thin circular plates are studied in detail. The internal weakening due to a crack resulted in decreasing the fundamental frequency of the plate. The exact method of solution and the results presented in this paper are expected to be of specific use in analyzing the effect of a radial crack on the fundamental natural frequency of the circular plate in the presence of a translational restraint existing along the outer edge of the plate. These exact solutions can be used to check the numerical or approximate results.

References

1.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
2.
Leissa
,
A. W.
,
1969
,
Vibration of Plates
,
NASA SP-160, Office of Technology Utilization
,
Washington, D.C.
3.
Szilard
,
R.
,
1974
,
Theory and Analysis of Plates
,
Prentice-Hall
,
New Jersey
.
4.
Azimi
,
S.
,
1988
, “
Free Vibrations of Circular Plates With Elastic or Rigid Interior Support
,”
J. Sound Vib.
,
120
, pp.
37
52
.10.1016/0022-460X(88)90333-1
5.
Weisensel
,
G. N.
,
1989
, “
Natural Frequency Information for Circular and Annular Plates
,”
J. Sound .Vib.
,
133
(
1
), pp.
129
137
.10.1016/0022-460X(89)90987-5
6.
Ding
,
Z.
,
1994
, “
Free Vibration of Arbitrarily Shaped Plates With Concentric Ring Elastic and/or Rigid Supports
,”
Comput. Struct
,
50
(
5
), pp.
685
692
.10.1016/0045-7949(94)90427-8
7.
Wang
,
C.
Y.
,
and
Wang
,
C. M.
,
2003
, “
Fundamental Frequencies of Circular Plates With Internal Elastic Ring Support
,”
J. Sound Vib.
,
263
(
5
), pp.
1071
1078
.10.1016/S0022-460X(03)00275-X
8.
Dimarogonas
,
A. D.
,
1996
, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
,
55
(
5
), pp.
831
857
.10.1016/0013-7944(94)00175-8
9.
Lynn
,
P.
P.
,
and
Kumbasar
,
N.
,
1967
, “
Free Vibrations of Thin Rectangular Plates Having Narrow Cracks With Simply Supported Edges
,”
Dev. Mech.
,
4
, pp.
911
928
.
10.
Petyt
,
M.
,
1968
, “
The Vibration Characteristics of a Tensioned Plate Containing a Fatigue Crack
,”
J. Sound Vib.
,
8
(
3
), pp.
377
389
.10.1016/0022-460X(68)90244-7
11.
Stahl
,
B.
, and
Keer
,
L. M.
,
1972
, “
Vibration and Stability of Cracked Rectangular Plates
,”
Int. J. Solids Struct.
,
8
(
1
), pp.
69
91
.10.1016/0020-7683(72)90052-2
12.
Hirano
,
Y.
, and
Okazaki
,
K.
,
1980
, “
Vibration of Cracked Rectangular-Plates
,”
Bull. JSME
,
23
, pp.
732
740
.10.1299/jsme1958.23.732
13.
Solecki
,
R.
,
1983
, “
Bending Vibration of a Simply Supported Rectangular Plate With a Crack Parallel to One Edge
,”
Eng. Fract. Mech.
,
18
(
6
), pp.
1111
1118
.10.1016/0013-7944(83)90004-8
14.
Yuan
,
J.
, and
Dickinson
,
S. M.
,
1992
, “
The Flexural Vibration of Rectangular Plate Systems Approached by Using Artificial Springs in the Rayleigh-Ritz Method
,”
J. Sound Vib.
,
159
(
1
), pp.
39
55
.10.1016/0022-460X(92)90450-C
15.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1994
, “
A Solution Method for Analysis of Cracked Plates Under Vibration
,”
Eng. Fract. Mech.
,
48
(
3
), pp.
393
404
.10.1016/0013-7944(94)90130-9
16.
Ma
,
C.
C.
,
and
Huang
,
C. H.
,
2001
, “
Experimental and Numerical Analysis of Vibrating Cracked Plates at Resonant Frequencies
,”
Exp. Mech.
,
41
(
1
), pp.
8
18
.10.1007/BF02323099
17.
Qian
,
G. L.
,
Gu
,
S. N.
, and
Jiang
,
J. S.
,
1991
, “
A Finite Element Model of Cracked Plates and Applications to Vibration Problems
,”
Comput. Struct.
,
39
, pp.
483
487
.10.1016/0045-7949(91)90056-R
18.
Lee
,
H. P.
, and
Lim
,
S. P.
, “
Vibration of Cracked Rectangular Plates Including Transverse Shear Deformation and Rotary Inertia
,”
Comput. Struct.
,
49
, pp.
715
718
.10.1016/0045-7949(93)90074-N
19.
Krawczuk
,
M.
,
1993
, “
Natural Vibrations of Rectangular Plates With a Through Crack
,”
Arch. Appl. Mech.
,
63
, pp.
491
504
. 10.1007/BF00788047
20.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1994
, “
A Solution Method for Analysis of Cracked Plates Under Vibration
,”
Eng. Fract. Mech.
,
48
, pp.
393
404
.10.1016/0013-7944(94)90130-9
21.
Khadem
,
S.
E.
,
and
Rezaee
,
M.
,
2000
, “
An Analytical Approach for Obtaining the Location and Depth of an All-Over Part-Through Crack on Externally In-Plane Loaded Rectangular Plate Using Vibration Analysis
,”
J. Sound Vib.
,
230
, pp.
291
308
.10.1006/jsvi.1999.2619
22.
Krawczuk
,
M.
,
Zak
,
A.
, and
Ostachowicz
,
W.
,
2001
, “
Finite Element Model of Plate With Elasto-Plastic Through Crack
,”
Comput. Struct.
,
79
, pp.
519
532
.10.1016/S0045-7949(00)00156-5
23.
Lee
,
P.
,
1992
, “
Fundamental Frequencies of Annular Plates With Internal Cracks
,”
Comput. Struct.
,
43
, pp.
1085
1089
.10.1016/0045-7949(92)90009-O
24.
Ramesh
,
K.
,
Chauhan
,
D. P. S.
, and
Mallik
,
A. K.
,
1997
, “
Free Vibration of an Annular Plate With Periodic Radial Cracks
,”
J. Sound Vib.
,
206
, pp.
266
274
.10.1006/jsvi.1997.1028
25.
Anifantis
,
N. K.
,
Actis
,
R. L.
, and
Dimarogonas
,
A. D.
,
1994
, “
Vibration of Cracked Annular Plates
,”
Eng. Fract. Mech.
,
49
, pp.
371
379
.10.1016/0013-7944(94)90265-8
26.
Yuan
,
J.
,
Young
,
P. G.
, and
Dickinson
,
S. M.
,
1994
, “
Natural Frequencies of Circular and Annular Plates With Radial or Circumferential Cracks
,”
Comput. Struct.
,
53
, pp.
327
334
.10.1016/0045-7949(94)90205-4
27.
Wang
,
C. Y.
,
2002
, “
Fundamental Frequency of a Circular Plate Weakened Along a Concentric Circle
,”
Z. Angew. Math. Mech.
,
82
(
1
), pp.
70
72
.10.1002/1521-4001(200201)82:1<70::AID-ZAMM70>3.0.CO;2-A
28.
Yu
,
L. H.
,
2009
, “
Frequencies of Circular Plate Weakened Along an Internal Concentric Circle
,”
Int. J. Struct. Stab. Dyn.
,
9
(
1
), pp.
179
185
.10.1142/S021945540900293X
29.
Kim
,
C.
S.
,
and
Dickinson
,
S. M.
,
1990
, “
The Flexural Vibration of the Isotropic and Polar Orthotropic Annular and Circular Plates With Elastically Restrained Peripheries
,”
J. Sound Vib.
,
143
(
1
), pp.
171
179
.10.1016/0022-460X(90)90576-L
30.
Wang
,
C.
Y.
,
and
Wang
,
C. M.
,
2001
, “
Buckling of Circular Plates With an Internal Ring Support and Elastically Restrained Edges
,”
Thin-Walled Struct.
,
39
(
5
), pp.
821
825
.10.1016/S0263-8231(01)00031-3
You do not currently have access to this content.