An approach to represent a stochastic process by the combination of finite stochastic harmonic functions is proposed. The conditions that should be satisfied to make sure that the power spectral density function of the stochastic harmonic function process is identical to the target power spectral density are firstly studied. Then, two kinds of stochastic harmonic functions, of which the distribution of the amplitudes and the random frequencies are different, are discussed. The probabilistic characteristics of the two kinds of stochastic harmonic functions, including the asymptotic distribution, the one-dimensional probability density function, and the rate of approaching the asymptotic distribution, etc., are studied in detail by theoretical treatment and numerical examples. Responses of a nonlinear structure subjected to strong earthquake excitation are investigated. The studies show that the proposed approach can capture the target power spectral density exactly with any number of components. The reduction of the components provides flexibility and reduces the computational cost. Finally, problems that need further investigations are discussed.

References

1.
Crandall
,
S. H.
,
1958
,
Random Vibration
,
MIT Press
,
Cambridge, MA
.
2.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probabilistic Structural Dynamics: Advanced Theory and Applications
,
McGraw-Hill
,
New York
.
3.
Li
,
J.
, and
Chen
,
J. B.
,
2009
,
Stochastic Dynamics of Structures
,
John Wiley & Sons
,
Singapore
.
4.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2004
,
Random Vibrations: Analysis of Structural and Mechanical Systems
,
Elsevier
,
Amsterdam
.
5.
Shiryaev
,
A. N.
,
1984
,
Probability
, 2nd ed.,
Springer-Verlag
,
New York
.
6.
Papoulis
,
A.
, and
Pillai
,
S. U.
,
2002
,
Probability, Random Variables and Stochastic Processes
, 4th ed.,
McGraw-Hill
,
Boston
.
7.
Li
,
J.
,
Yan
,
Q.
, and
Chen
,
J. B.
,
2012
, “
Stochastic Modeling of Engineering Dynamic Excitations for Stochastic Dynamics of Structures
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
19
28
.10.1016/j.probengmech.2011.05.004
8.
Loève
,
M.
,
1977
,
Probability Theory
,
Springer-Verlag
,
Berlin
.
9.
Huang
,
S. P.
,
Quek
,
S. T.
, and
Phoon
,
K. K.
,
2001
, “
Convergence Study of the Truncated Karhunen-Loeve Expansion for Simulation of Stochastic Processes
,”
Int. J. Numer. Methods Eng.
,
52
(
9
), pp.
1029
1043
.10.1002/nme.255
10.
Liu
,
Z. J.
,
Chen
,
J. B.
, and
Li
,
J.
,
2011
, “
Orthogonal Expansion of Gaussian Wind Velocity Field and PDEM-Based Vibration Analysis of Wind-Excited Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
1
), pp.
1207
1220
.10.1016/j.jweia.2011.09.008
11.
Grigoriu
,
M.
,
2006
, “
Evaluation of Karhunen-Loeve, Spectral, and Sampling Representations for Stochastic Processes
,”
J. Eng. Mech.
,
132
(
2
), pp.
179
189
.10.1061/(ASCE)0733-9399(2006)132:2(179)
12.
Grigoriu
,
M.
,
2002
,
Stochastic Calculus
,
Birkhäuser
,
Boston
.
13.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.10.1115/1.3119501
14.
Mignolet
,
M. P.
, and
Harish
,
M. V.
,
1996
, “
Comparison of Some Simulation Algorithms on Basis of Distribution
,”
J. Eng. Mech.
,
122
(
2
), pp.
172
176
.10.1061/(ASCE)0733-9399(1996)122:2(172)
15.
Spanos
,
P. D.
,
Beer
,
M.
, and
Red-Horse
,
J.
,
2007
, “
Karhunen–Loéve Expansion of Stochastic Processes With a Modified Exponential Covariance Kernel
,”
J. Eng. Mech.
,
133
(
7
), pp.
773
779
.10.1061/(ASCE)0733-9399(2007)133:7(773)
16.
Goto
,
H.
, and
Toki
,
K.
,
1969
, “
Structural Response to Nonstationary Random Excitation
,”
Proceedings of the 4th World Conference on Earthquake Engineering
,
Santiago, Chile
, pp.
130
144
.
17.
Shinozuka
,
M.
,
1971
, “
Simulation of Multivariate and Multidimensional Random Processes
,”
J. Acoust. Soc. Am.
,
49
(
1
), pp.
357
368
.10.1121/1.1912338
18.
Jackson
,
D.
,
1941
,
Fourier Series and Orthogonal Polynomials
,
Mathematical Association of America
,
Oberlin, OH
.
19.
Zhao
,
Y. G.
, and
Ono
,
T.
,
2001
, “
Moment Methods for Structural Reliability
,”
Struct. Safety
,
23
, pp.
47
75
.10.1016/S0167-4730(00)00027-8
20.
Kline
,
M.
,
1972
,
Mathematical Thought from Ancient to Modern Times
,
Oxford University Press
,
New York
.
21.
Clough
,
R. W.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
22.
Li
,
J.
and
Chen
,
J. B.
,
2004
, “
Probability Density Evolution Method for Dynamic Response Analysis of Structures With Uncertain Parameters
,”
Comput. Mech.
,
34
, pp.
400
409
.10.1007/s00466-004-0583-8
23.
Kanai
,
K.
,
1957
, “
Semi-Empirical Formula for the Seismic Characteristics of the Ground
,”
Bull. Earthquake Res. Inst., Univ. Tokyo
,
35
, pp.
309
325
.
24.
Tajimi
,
H.
,
1960
, “
A Statistical Method of Determining the Maximum Response of a Building Structure During an Earthquake
,”
Proceedings of the 2nd World Conference on Earthquake Engineering
, Vol.
2
,
Tokyo and Kyoto
, pp.
781
798
.
25.
Amin
,
M.
, and
Ang
,
A. H.-S.
,
1968
, “
Nonstationary Stochastic Model of Earthquake Motions
,”
J. Engrg. Mech. Div.
,
94
(
EM2
), pp.
559
583
.
26.
Hua
,
L. K.
, and
Wang
,
Y.
,
1981
,
Applications of Number Theory to Numerical Analysis
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.