In this paper, a new model of the progression phase of a drifting oscillator is proposed. This is to account more accurately for the penetration of an impactor through elasto-plastic solids under a combination of a static and a harmonic excitation. First, the dynamic response of the semi-infinite elasto-plastic medium subjected to repeated impacts by a rigid impactor with conical or spherical contacting surfaces is considered in order to formulate the relevant force-penetration relationship during the loading and unloading phases of the contact. These relationships are then used to develop a physical and mathematical model of a new drifting oscillator, where the time histories of the progression through the medium include both the loading and unloading phases. A nonlinear dynamic analysis of the system was performed and it confirms that the maximum progressive motion of the oscillator occurs when the system exhibits period one motion. The dynamic response for both contact geometries (conical or spherical) show a topological similarity for a range of the static loads.

References

References
1.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Grebogi
,
C.
, 2001, “
Modeling of an Impact System With a Drift
,”
Phys. Rev. E
,
64
, p.
0562244
.
2.
Kristsov
,
A.
, and
Wiercigroch
,
M.
, 1999, “
Dry Friction Model of Percussive Drilling
,”
Meccanica
,
34
, pp.
425
434
.
3.
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
, 2004, “
Analytical Drift Reconstruction for Visco-Elastic Impact Oscillators Operating in Periodic and Chaotic Regimes
,”
Chaos Solitons Fractals
,
19
, pp.
151
161
.
4.
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
, 2007, “
Low Dimensional Maps for Piecewise Smooth Oscillators
,”
J. Sound Vib.
,
305
, pp.
750
771
.
5.
Franca
,
L. F. P.
, and
Weber
,
H. I.
, 2004, “
Experimental and Numerical Study of Resonanance Hammer Drilling Model With Drift
,”
Chaos Solitons Fractals
,
21
, pp.
789
801
.
6.
Ajibose
,
O. K.
,
Wiercigroch
,
M.
,
Pavlovskaia
,
E.
, and
Akisanya
,
A. R.
, 2010, “
Global and Local Dynamics of Drifting Oscillator for Different Contact Force Models
,”
Int. J. Nonlinear Mechanics
,
45
, pp.
850
858
.
7.
Půst
,
L.
, and
Peterka
,
F.
, 2003, “
Impact Oscillator With Hertz’s Model of Contact
,”
Meccanica
,
38
, pp.
99
114
.
8.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
, 1975, “
Coefficient of Restitution Interpreted as Damping in Vibro-Impact
,”
J. Appl. Mech.
,
42
(
E
), pp.
440
445
.
9.
Muthukumar
,
S.
, and
DesRoches
,
R.
, 2006, “
A Hertz Contact Model With Non-Linear Damping for Pounding Simulation
,”
Earthquake Eng. Struct. Dyn.
,
35
, pp.
811
828
.
10.
Lee
,
E. H.
, 1940, “
The Impact of a Mass Striking a Beam
,”
J. Appl. Mech.
,
42
(
E
), pp.
129
128
.
11.
Shivakumar
,
K. N.
, 1985,“
Prediction of Impact Force Due to Low-Velocity Impact on Circular Composite Laminates
,”
J. Appl. Mech.
,
52
, pp.
674
680
.
12.
Wu
,
K. Q.
, and
Yu
,
T. X.
, 2001, “
Simple Dynamic Models of Elastic-Plastic Structures Under Impact
,”
Int. J. Impact Eng.
,
25
, pp.
735
754
.
13.
Hill
,
R.
, 1950,
Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
14.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
.
15.
Mulhearn
,
T. O.
, 1951, “
Deformation of Metals by Vickers-Type Pyramidal Indenters
,”
J. Mech. Phys. Solids
,
18
, pp.
85
96
.
16.
Johnson
,
K. L.
, 1970, “
The Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
,
7
, pp.
115
126
.
17.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
18.
Love
,
A. E. H.
, 1906,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge, UK
.
19.
Stronge
,
W. J.
, 2000,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
20.
Kick
,
F.
, 1885,
Das Gesetz der Proportionalen Widerstände und seine Anwebdungen
,
Felix-Verlag
,
Leipzig, Germany
.
21.
Pang
,
S. S.
,
Goldsmith
,
W.
, and
Hood
,
M.
, 1989, “
A Force-Indentation Model for Brittle Rocks
,”
Rock Mech. Rock Eng.
,
22
, pp.
127
148
.
22.
Mesarovicy
,
S. D.
, and
Fleck
,
N. A.
, 1999, “
Spherical Indentation of Elastic-Plastic Solids
,”
Proc. R. Soc. Lond., A
,
455
, pp.
2707
2728
.
23.
Szwedzicki
,
T.
, 1998, “
Indentation Hardness Testing of Rocks
,”
Int. J. Rock Mech. Min. Sci.
,
6
, pp.
825
829
.
24.
Sakai
,
M.
, 2003, “
Elastic Recovery in the Unloading of Pyramidal Microindentation
,”
J. Material Res.
,
18
(
7
), pp.
1631
1640
.
25.
Pharr
,
G. M.
, and
Bolshakov
,
A.
, 2002, “
Understanding Nanoindentation Unloading Curves
,”
J. Material Res.
,
17
, pp.
2660
2671
.
26.
Hertz
,
H.
, 1896, “
On the Contact of Elastic Solids
,”
Miscellaneous Papers, (English translation)
D. E.
Jones
and
G. A.
Schott
eds.,
Macmillan
,
London
, pp.
146
152
.
27.
MATLAB
, 2009,
The Language of Technical Computing
, http://www.mathworks.com/products/matlab.
You do not currently have access to this content.