Reflection and refraction of harmonic SH-waves from the interface of two dissimilar media with microheterogeneity is studied. The effect of the microheterogeneity on the overall behavior of the media is taken into account by adding higher order displacement gradients in the stress-strain relationship. It is found that a harmonic wave reflects back with the same angle of the incident wave, like in a classical case. However, it is found that the direction of propagation of the refracted wave is dependent on the wave number. It is also shown that the critical angle for which the incident wave cannot be transmitted to the other half plane is dependent on the wave number.
Issue Section:
Research Papers
References
1.
Ament
, W. S.
, 1953, “Sound Propagation in Gross Mixtures
,” J. Acoust. Soc. Am.
, 25
, pp. 638
–641
.2.
Postma
, G. W.
, 1955, “Wave Propagation in a Stratified Medium
,” Geophysics
, 20
(4
), pp. 780
–806
.3.
Nemat-Nasser
, A.
, and Hori
, M.
, 1999, Micromechanics: Overall Properties of Heterogeneous Materials
, Elsevier
, New York.
4.
Ament
, W. S.
, 1959, “Wave Propagation in Suspensions
,” U.S. Naval Research Lab, Report No. 5307.5.
Mal
, A. K.
, and Knopoff
, L.
, 1967, “Elastic Wave Velocities in Two-Component Systems
,” J. Inst. Math. Appl.
, 3
, pp. 376
–387
.6.
Kuster
, G. T.
, and Toksöz
, M. N.
, 1974, “Velocity and Attenuation of Seismic Waves in Two-Phase Media: Part 1. Theoretical Formulations
,” Geophysics
, 39
(5
), pp. 587
–606
.7.
Biot
, M. A.
, 1956, “Theory of Propagation of Elastic Waves in Fluid Saturated Porous Solid I: Low Frequency Range
,” J. Acoust. Soc. Am.
, 28
, pp. 168
–178.
8.
Biot
, M. A.
, 1956, “Theory of Propagation of Elastic Waves in Fluid Saturated Porous Solid II: Higher Frequency Range
,” J. Acoust. Soc. Am.
, 28
, pp 179
–191
.9.
Hill
, R.
, 1952, “The Elastic Behaviour of a Crystalline Aggregate
,” Proc. Phys. Soc., London, Sect. A
, 65
, pp. 349
–354
.10.
Kröner
, E.
, 1953, “Das Fundamentalintegral Der Anisotropen Elastischen Differentialgleic-Hungen
,” Z. Phys.
, 136
, pp. 402
–410
.11.
Hershey
, A. V.
, 1954, “The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,” J. Appl. Mech.
, 21
, pp. 236
–240
.12.
Hashin
, Z.
, 1964, “Theory of Mechanical Behaviour of Heterogeneous Media
,” Appl. Mech. Rev.
, 17
, pp. 1
–9
.13.
Budiansky
, B.
, 1965, “On the Elastic Moduli of Some Heterogeneous Materials
,” J. Mech. Phys. Solids
, 13
, pp. 223
–227
.14.
Walpole
, L. J.
, 1966, “On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—I
,” J. Mech. Phys. Solids
, 14
, pp. 151
–162
.15.
Willis
, J. R.
, 1977, “Bounds and Self-Consistent Estimates for the Overall Properties of Anisotropic Composites
,” J. Mech. Phys. Solids
, 25
, pp. 185
–202
.16.
Christensen
, R. M.
, 1979, Mechanics of Composite Materials
, Wiley-Interscience
, New York.
17.
Nabarro
, F. R. N.
, 1979, Dislocations in Solids, Vol. 1: The Elasticity Theory
, North-Holland
, Amsterdam.
18.
Walpole
, L. J.
, 1981, “Elastic Behavior of Composite Materials: Theoretical Foundations
,” Adv. Appl. Mech.
, 21
, pp. 169
–242
.19.
Willis
, J. R.
, 1981, “Variational and Related Methods for the Overall Properties of Composites
,” Adv. Appl. Mech.
, 21
, pp. 1
–78
.20.
Bilby
, B. A.
, Miller
, K. J.
, and Willis
, J. R.
, eds., 1985, Fundamentals of Deformation and Fracture—Eshelby Memorial Symposium
, Cambridge University Press
, Cambridge
.21.
Mura
, T.
, 1987, Micromechanics of Defects in Solids
, 2nd ed., Martinus Nijhoff Publishers
, Dordrecht, The Netherlands
.22.
Weng
, G. J.
, Taya
, M.
, and Abé
, H.
, eds., 1990, Micromechanics and Inhomogeneity—The T. Mura 65th Anniversary Volume
, Springer-Verlag
, New York.
23.
Beran
, M. J.
, 1968, Statistical Continuum Theories
, Wiley-Interscience
, New York.
24.
Beran
, M. J.
, 1971, “Application of Statistical Theories of Heterogeneous Materials
,” Phys. Status Solidi A
, 6
, pp. 365
–384
.25.
Kröner
, E.
, 1971, Statistical Continuum Mechanics
, Springer–Verlag
, Berlin.
26.
Batchelor
, G. K.
, 1974, “Transport Properties of Two-Phase Materials With Random Structure
,” Annu. Rev. Fluid Mech.
, 6
, pp. 227
–255
.27.
McCoy
, J. J.
, 1981, “Macroscopic Response of Continua With Random Microstructure
,” Mechanics Today
, Vol. 6
, S.
Nemat-Nasser
, ed., Pergamon
, Oxford
, pp. 1
–40
.28.
Beran
, M. J.
, 1974, “Application of Statistical Theories for the Determination of Thermal, Electrical and Magnetic Properties of Heterogeneous Media
,” Composite Materials
, Vol. 2
, G. P.
Sedneckyj
, ed., Academic Press
, New York
, pp. 209
–249
.29.
Beran
, M. J.
, and McCoy
, J. J.
, 1970, “Mean Field Variations in a Statistical Sample of Heterogeneous Linearly Elastic Solids
,” Int. J. Solids Struct.
, 6
, pp
1035–1054
.30.
Levin
, V. M.
, 1971, “The Relation Between Mathematical Expectations of Stress and Strain Tensors in Elastic Microheterogeneous Media
,” Prikladnaya Matematikay Mekanika
, 35
, pp. 694
–701
(English translation from Russian).31.
Torquato
, S.
, 1991, “Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties
,” Appl. Mech. Rev.
, 42
, pp. 37
–76
.32.
Coleman
, B.
, and Gurtin
, M.
, 1967, “Thermodynamics With Internal State Variables
,” J. Chem. Phys.
, 47
, pp. 597
–613
.33.
Rice
, J. R.
, 1971, “Inelastic Constitutive Relations for Solids: An Internal–Variable Theory and its Applications to Metal Plasticity
,” J. Mech. Phys. Solids
, 19
, pp. 433
–455
.34.
Talreja
, R.
, 1985, “A Continuum Mechanics Characterization of Damage in Composite Materials
,” Proc. R. Soc. London, Ser. A
, 399
, pp. 195
–216
.35.
Ju
, J. W.
, ed., 1992, Recent Advances in Damage Mechanics and Plasticity
, Vol. 132
, ASME
, New York
.36.
37.
Krajcinovic
, D.
, 1996, Damage Mechanics
, North-Holland
, New York.
38.
Truesdell
, C.
, and Toupin
, R. A.
, 1960, “The Classical Field Theories
,” Handbuch der Physik
, Springer-Verlag
, Berlin
.39.
Bowen
, R. W.
, 1976, “Theory of Mixtures
,” Continuum Physics
, Vol. 4
, A. C.
Eringen
, ed., Academic Press
, New York
.40.
Bedford
, A.
, and Stern
, M.
, 1972, “Multi-Continuum Theory for Composite Elastic Materials
,” Acta Mech.
, 14
, pp. 85
–102
.41.
Stern
, M.
, and Bedford
, A.
, 1972, “Wave Propagation in Elastic Laminates Using a Multi-Continuum Theory
,” Acta Mech.
, 15
, pp. 22
–38
.42.
Bedford
, A.
, Sutherland
, H. J.
, and Linge
, R.
, 1972, “On Theoretical and Experimental Wave Propagation in a Fiber-Reinforced Elastic Material
,” J. Appl. Mech.
, 39
(2
), pp. 597
–598
.43.
Hegemier
, G. A.
, Gurtman
, G. A.
, and Nayfeh
, A. H.
, 1973, “A Continuum Mixture Theory of Wave Propagation in Laminated and Fiber-Reinforced Composites
,” Int. J. Solids Struct.
, 9
, pp. 395
–414
.44.
Nayfeh
, A. H.
, and Gurtman
, G. A.
, 1974, “A Continuum Approach to the Propagation of Shear Waves in Laminated Wave Guides
,” J. Appl. Mech.
, 41
(1
), pp. 106
–110
.45.
McNiven
, H. D.
, and Mengi
, Y., A.
, 1979, “Mathematical Model for the Linear Dynamic Behavior of two Phase Periodic Materials
,” Int. J. Solids Struct.
, 15
, pp. 271
–280
.46.
McNiven
, H. D.
, and Mengi
, Y.
, 1979, “A Mixture Theory for Elastic Laminated Composites
,” Int. J. Solids Struct.
, 15
, pp. 281
–302
.47.
McNiven
, H. D.
, and Mengi
, Y.
, 1979, “Propagation of Transient Waves in Elastic Laminated Composites
,” Int. J. Solids Struct.
, 15
, pp. 303
–318
.48.
Altan
, B. S.
, and Subhash
, G.
, 2002, “A Nonlocal Formulation Based on a Novel Averaging Scheme Applicable to Nanostructured Materials
,” Mech. Mater.
, 35
, pp. 281
–294
.49.
Voigt
, W.
, 1894, Theoretische Studien ueber die Elastizitaetverhaeltnisse der Krystalle. Abh. Ges. Wiss. Gottingen
, Vol. 34
(1887
); pp. 72
–79
.50.
Cosserat
, E.
, and Cosserat
, F.
, 1909, Theorie de Corps Deformables
, A.
Hermann
, ed., Scientific Library A. Hermann and Sons
, Paris
.51.
Mindlin
, R. D.
, and Eshel
, N. N.
, 1968, “On First Strain-Gradient Theories in Linear Elasticity
,” Int. J. Solids Struct.
, 1
, pp. 109
–124
.52.
Ru
, C. Q.
, and Aifantis
, E. C.
, 1993, “A Simple Approach to Solve Boundary-Value Problems in Gradient Elasticity
,” Acta Mech.
, 10
, pp. 59
–68
.53.
Ting
, T. C. T.
, 2005, “The Polarization Vectors at the Interface and the Secular Equation for Stoneley Waves in Monoclinic Biomaterials
,” Proc. R. Soc., London, Ser. A
, 461
, pp. 711
–731
.54.
Jerzak
, W.
, Siegmann
, W. L.
, and Collins
, M. D.
, 2005, “Modeling Rayleigh and Stoneley Waves and Other Interface and Boundary Effects With the Parabolic Equation
,” J. Acoust. Soc. Am.
, 117
(6
), pp. 3497
–3503
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.