A theoretical study on the vibration isolation and energy absorption capability of high porosity closed-cell aluminum foams subjected to impact loading is presented. A double degree of freedom (DDF) spring-damper-foam collision model (mimicking important equipment and/or personnel) is established to explore the physical mechanisms of shock attenuation when the system as a whole is dropped from a given height and collides with hard ground. For validation, the finite element method is employed to simulate directly the dynamic responses of the whole system. The effects of key system parameters including spring stiffness, damping ratio, mass ratio, initial impact velocity and foam thickness on the mass of the foam cushion and peak acceleration of the protected structure are quantified. The DDF model is subsequently employed to minimize the weight of the foam cushion against impact energy subjected to different design constraints; the corresponding optimal geometrical dimensions of the foam cushion are also obtained.

References

References
1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties
,
Cambridge University
,
Cambridge
.
2.
McCormack
,
T. M.
,
Miller
,
R.
,
Kesler
,
O.
, and
Gibson
,
L. J.
, 2001, “
Failure of Sandwich Beams With Metallic Foam Cores
,”
Int. J. Solids Struct.
,
38
(
28–29
), pp.
4901
4920
.
3.
Hanssen
,
A. G.
,
Stobener
,
K.
,
Rausch
,
G.
,
Langseth
,
M.
, and
Keller
,
H.
, 2006, “
Optimisation of Energy Absorption of an A-Pillar by Metal Foam Insert
,”
Int. J. Crashworthiness
,
11
(
3
), pp.
231
241
.
4.
Yamada
,
Y.
,
Banno
,
T.
,
Xie
,
Z. K.
, and
Wen
,
C.
, 2005, “
Energy Absorption and Crushing Behaviour of Foam-Filled Aluminium Tubes
,”
Mater. Trans.
,
46
(
12
), pp.
2633
2636
.
5.
Laurin
,
F.
, and
Vizzini
,
A. J.
, 2005, “
Energy Absorption of Sandwich Panels With Composite-Reinforced Foam Core
,”
J. Sandw. Struct. Mater.
,
7
(
2
), pp.
113
132
.
6.
Altenhof
,
W.
,
Powell
,
C.
,
Harte
,
A. M.
, and
Gaspar
,
R.
, 2005, “
An Experimental Investigation into the Energy Absorption and Force/Displacement Characteristics of Aluminum Foam Filled Braided Stainless Steel Tubes Under Quasistatic Tensile Loading Conditions
,”
Int. J. Crashworthiness
,
10
(
1
), pp.
21
31
.
7.
Karagiozova
,
D.
,
Langdon
,
G. S.
, and
Nurick
,
G. N.
, 2010, “
Blast Attenuation in Cymat Foam Core Sacrificial Claddings
,”
Int. J. Mech. Sci.
,
52
(
5
), pp.
758
776
.
8.
Homae
,
T.
,
Saburi
,
T.
,
Wakabayashi
,
K.
,
Matsumura
,
T.
, and
Nakayama
,
Y.
, 2009, “
Attenuation of Blast Wave Using Biodegradable Foam Material Around a Spherical Charge of Composition C-4
,”
Sci. Technol. Energy Mater.
,
70
(
3–4
), pp.
76
79
.
9.
Lee
,
S.
,
Barthelat
,
F.
,
Moldovan
,
N.
,
Espinosa
,
H. D.
, and
Wadley
,
H. N. G.
, 2006, “
Deformation Rate Effects on Failure Modes of Open-Cell Al Foams and Textile Cellular Materials
,”
Int. J. Solids Struct.
,
43
(
1
), pp.
53
73
.
10.
Abdennadher
,
S.
, and
Zhao
,
H.
, 2004, “
Experimental Study of Aluminium Foams Under Impact Loading
,”
Key Eng. Mater.
,
274–276
, pp.
781
786
.
11.
Dannemann
,
K. A.
, and
Lankford
,
J.
, 2000, “
High Strain Rate Compression of Closed-Cell Aluminium Foams
,”
Mater. Sci. Eng. A
,
293
(
1–2
), pp.
157
164
.
12.
Mukai
,
T.
,
Kanahashi
,
H.
,
Miyoshi
,
T.
,
Mabuchi
,
M.
,
Nieh
,
T. G.
, and
Higashi
,
K.
, 1999, “
Experimental Study of Energy Absorption in a Close-Celled Aluminum Foam Under Dynamic Loading
,”
Scr. Mater.
,
40
(
8
), pp.
921
927
.
13.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2000, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
277
298
.
14.
Zhang
,
J.
,
Zhao
,
G. P.
, and
Lu
,
T. J.
, 2010, “
Strain Rate Effects of Closed-Cell Aluminium Foams
,”
J. XJTU
,
44
(
5
), pp.
97
101
.
15.
Shim
,
V. P. W.
, and
Yap
,
K. Y.
, 1997, “
Static and Impact Crushing of Layered Foam-Plate Systems
,”
Int. J. Mech. Sci.
,
39
(
1
), pp.
69
86
.
16.
Rajendran
,
R.
,
Sai
,
K. P.
,
Chandrasekar
,
B.
,
Gokhale
,
A.
, and
Basu
,
S.
, 2009, “
Impact Energy Absorption of Aluminium Foam Fitted AISI 304L Stainless Steel Tube
,”
Mater. Design
,
30
(
5
), pp.
1777
1784
.
17.
Peroni
,
L.
,
Avalle
,
M.
, and
Peroni
,
M.
, 2008, “
The Mechanical Behaviour of Aluminium Foam Structures in Different Loading Conditions
,”
Int. J. Impact Eng.
,
35
(
7
), pp.
644
658
.
18.
Reid
,
S. R.
, and
Reddy
,
T. Y.
, and
Peng
,
C.
, 1993, “
Dynamic Compression of Cellular Structures and Materials
,”
Structural Crashworthiness and Failure
,
N.
Jones
and
T.
Wierzbicki
, eds.,
Elsevier
,
New York
, pp.
295
339
.
19.
Tan
,
P. J.
,
Reid
,
S. R.
,
Harrigan
,
J. J.
,
Zou
,
Z.
, and
Li
,
S.
, 2005, “
Dynamic Compressive Strength Properties of Aluminium Foams. Part II—‘Shock’ Theory and Comparison With Experimental Data and Numerical Models
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2206
2230
.
20.
Li
,
Q. M.
, and
Reid
,
S. R.
, 2006, “
About One-Dimensional Shock Propagation in a Cellular Material
,”
Int. J. Impact Eng.
,
32
(
11
), pp.
1898
1906
.
21.
Tan
,
P. J.
,
Harrigan
,
J. J.
, and
Reid
,
S. R.
, 2002, “
Inertia Effects in Uniaxial Dynamic Compression of a Closed Cell Aluminium Alloy Foam
,”
Mater. Sci. Tech-Lond.
,
18
(
5
), pp.
480
488
.
22.
Ma
,
G. W.
, and
Ye
,
Z. Q.
, 2005, “
Analysis of Foam Claddings for Blast Alleviation
,”
WIT Transactions on Engineering Sciences: Impact Loading of Lightweight Structures
,
M.
Alves
, and
N.
Jones
, eds.,
WIT Press
,
Ashurst, England
, pp.
359
372
.
23.
Ma
,
G. W.
, and
Ye
,
Z. Q.
, 2007, “
Energy Absorption of Double-Layer Foam Cladding for Blast Alleviation
,”
Int. J. Impact Eng.
,
34
(
2
), pp.
329
347
.
24.
Ma
,
G. W.
, and
Ye
,
Z. Q.
, 2007, “
Analysis of Foam Claddings for Blast Alleviation
,”
Int. J. Impact Eng.
,
34
(
1
), pp.
60
70
.
25.
Bourne
,
N. K.
,
Bennett
,
K.
,
Milne
,
A. M.
,
MacDonald
,
S. A.
,
Harrigan
,
J. J.
, and
Millett
,
J. C. F.
, 2008, “
The Shock Response of Aluminium Foams
,”
Scr. Mater.
,
58
(
2
), pp.
154
157
.
26.
Shim
,
V. P. W.
,
Tu
,
Z. H.
, and
Lim
,
C. T.
, 2000, “
Two-Dimensional Response of Crushable Polyurethane Foam to Low Velocity Impact
,”
Int. J. Impact Eng.
,
24
(
6–7
), pp.
703
731
.
27.
Ahmad
,
Z.
,
Thambiratnam
,
D. P.
, and
Tan
,
A. C. C.
, 2010, “
Dynamic Energy Absorption Characteristics of Foam-Filled Conical Tubes Under Oblique Impact Loading
,”
Int. J. Impact Eng.
,
37
(
5
), pp.
475
488
.
28.
Joshi
,
G.
,
Bajaj
,
A. K.
, and
Davies
,
P.
, 2010, “
Whole-Body Vibratory Response Study Using a Nonlinear Multi-Body Model of Seat-Occupant System With Viscoelastic Flexible Polyurethane Foam
,”
Ind. Health
,
48
(
5
), pp.
663
674
.
29.
Toward
,
M. G. R.
, and
Griffin
,
M. J.
, 2010, “
A Variable Parameter Single Degree-of-Freedom Model for Predicting the Effects of Sitting Posture and Vibration Magnitude on the Vertical Apparent Mass of the Human Body
,”
Ind. Health
,
48
(
5
), pp.
654
662
.
30.
Li
,
B. C.
,
Zhao
,
G. P.
, and
Lu
,
T. J.
, 2010, “
Low Strain Rate Compressive Behavior of High Porosity Close-Celled Aluminum Foams
,”
Chin. J. Theor. Appl. Mech.
,
43
(
1
), pp.
122
135
.
31.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2005, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2347
2383
.
32.
Tan
,
P. J.
,
Reid
,
S. R.
,
Harrigan
,
J. J.
,
Zou
,
Z.
, and
Li
,
S.
, 2005, “
Dynamic Compressive Strength Properties of Aluminium Foams. Part I—Experimental Data and Observations
,”
J. Mech. Phys. Solids
,
53
(
10
), pp.
2174
2205
.
33.
Li
,
B. C.
,
Zhao
,
G. P.
, and
Lu
,
T. J.
, 2011, “
Low Strain Rate Compressive Behaviors of High Porosity Closed-Cell Aluminum Foams
,”
Sci. China, Ser. E:Technol. Sci. (accepted)
.
34.
Zhu
,
H. X.
,
Hobdell
,
J. R.
, and
Windle
,
A. H.
, 2000, “
Effects of Cell Irregularity on the Elastic Properties of Open-Cell Foams
,”
Acta Mater.
,
48
(
20
), pp.
4893
4900
.
35.
Roberts
,
A. P.
, and
Garboczi
,
E. J.
, 2001, “
Elastic Moduli of Model Random Three-Dimensional Closed-Cell Cellular Solids
,”
Acta Mater.
,
49
(
2
), pp.
189
197
.
36.
Ma
,
G. W.
,
Ye
,
Z. Q.
, and
Shao
,
Z. S.
, 2009, “
Modeling Loading Rate Effect on Crushing Stress of Metallic Cellular Materials
,”
Int. J. Impact Eng.
,
36
(
6
), pp.
775
782
.
37.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2000, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
38.
DSSC
., 2007,
ABAQUS/Standard User’s Manual, Version 6.7
,
Dassault Systèmes Simulia Corp. (formerly ABAQUS, Inc.)
,
Providence, RI
.
39.
Buyuk
,
M.
,
Kan
,
S.
, and
Loikkanen
,
M. J.
, 2009, “
Explicit Finite-Element Analysis of 2024-T3/T351 Aluminum Material Under Impact Loading for Airplane Engine Containment and Fragment Shielding
,”
J. Aerosp. Eng.
,
22
(
3
), pp.
287
295
.
You do not currently have access to this content.