The main objective of this paper is to study the transient magneto-thermoviscoelastic stresses in a nonhomogeneous anisotropic solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about it with a constant angular velocity. The system of fundamental equations is solved by means of a dual-reciprocity boundary element method (DRBEM). The results indicate that the effects of inhomogeneity and rotation are very pronounced.

References

References
1.
Abd-Alla
,
A. M.
,
Abd-Alla
,
A. N.
, and
Zeidan
,
N. A.
, 2000, “
Thermal Stresses in a Non-Homogeneous Orthotropic Elastic Multilayered Cylinder
,”
J. Therm. Stresses
,
23
(
5
), pp.
413
428
.
2.
Clements
,
D. L.
, 1973, “
Thermal Stress in Anisotropic Elastic Half-Space
,”
SIAM J. Appl. Math.
,
24
(
3
), pp.
332
337
.
3.
El-Naggar
,
A. M.
,
Abd-Alla
,
A. M.
, and
Fahmy
,
M. A.
, 2004, “
The Propagation of Thermal Stresses in an Infinite Elastic Slab
,”
Appl. Math. Comput.
,
157
(
2
), pp.
307
312
.
4.
El-Naggar
,
A. M.
,
Abd-Alla
,
A. M.
,
Fahmy
,
M. A.
, and
Ahmed
,
S. M.
, 2002, “
Thermal Stresses in a Rotating Non-Homogeneous Orthotropic Hollow Cylinder
,”
Heat Mass Transfer
,
39
(
1
), pp.
41
46
.
5.
Mansur
,
W. J.
, and
Brebbia
,
C. A.
, 1983, “
Transient Elastodynamics Using a Time-Stepping Technique
,”
Boundary Elements
,
C. A.
Brebbia
,
T.
Futagami
, and
M.
Tanaka
, eds.,
Springer-Verlag
,
Berlin
, pp.
677
698
.
6.
Antes
,
H.
, 1985, “
A Boundary Element Procedure for Transient Wave Propagations in Two Dimensional Isotropic Elastic Media
,”
Finite Elem. Anal. Des.
,
1
(
4
), pp.
313
322
.
7.
Domínguez
,
J.
, 1993,
Boundary Elements in Dynamics
,
Computational Mechanics Publication
,
Southampton, UK
.
8.
Schanz
,
M.
, 2001,
Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach
,
Springer-Verlag
,
Berlin
.
9.
Fahmy
,
M. A.
, 2011, “
Influence of Inhomogeneity and Initial Stress on the Transient Magneto-Thermo-Visco-Elastic Stress Waves in an Anisotropic Solid
,”
World J. Mech.
,
1
(
5
), pp.
256
265
.
10.
Canelas
,
A.
, and
Sensale
,
B.
, 2010, “
A Boundary Knot Method for Harmonic Elastic and Viscoelastic Problems Using Single-Domain Approach
,”
Eng. Anal. Boundary Elem.
,
34
(
10
), pp.
845
855
.
11.
Davì
,
G.
, and
Milazzo
,
A.
, 2011, “
A Regular Variational Boundary Model for Free Vibrations of Magneto-Electro-Elastic Structures
,”
Eng. Anal. Boundary Elem.
,
35
(
3
), pp.
303
312
.
12.
Fahmy
,
M. A.
, and
El-Shahat
,
T. M.
, 2008, “
The Effect of Initial Stress and Inhomogeneity on the Thermoelastic Stresses in a Rotating Anisotropic Solid
,”
Arch. Appl. Mech.
,
78
(
6
), pp.
431
442
.
13.
Hou
,
P. F.
,
He
,
S.
, and
Chen
,
C. P.
, 2011, “
2D General Solution and Fundamental Solution for Orthotropic Thermoelastic Materials
,”
Eng. Anal. Boundary Elem.
,
35
(
1
), pp.
56
60
.
14.
Karlis
,
G. F.
,
Charalambopoulos
,
A.
, and
Polyzos
,
D.
, 2010, “
An Advanced Boundary Element Method for Solving 2D and 3D Static Problems in Mindlin’s Strain-Gradient Theory of Elasticity
,”
Int. J. Numer. Methods Eng.
,
83
(
11
), pp.
1407
1427
.
15.
Matsumoto
,
T.
,
Guzik
,
A.
, and
Tanaka
,
M.
, 2005, “
A Boundary Element Method for Analysis of Thermoelastic Deformations in Materials With Temperature Dependent Properties
,”
Int. J. Numer. Methods Eng.
,
64
(
11
), pp.
1432
1458
.
16.
Mohammadi
,
M.
,
Hematiyan
,
M. R.
, and
Marin
,
L.
, 2010, “
Boundary Element Analysis of Nonlinear Transient Heat Conduction Problems Involving Non-Homogenous and Nonlinear Heat Sources Using Time-Dependent Fundamental Solutions
,”
Eng. Anal. Boundary Elem.
,
34
(
7
), pp.
655
665
.
17.
Zhang
,
X. H.
,
Ouyang
,
J.
, and
Zhang
,
L.
, 2010, “
Characteristic Based Split (CBS) Meshfree Method Modeling for Viscoelastic Flow
,”
Eng. Anal. Boundary Elem.
,
34
(
2
), pp.
163
172
.
18.
Brebbia
,
C. A.
, and
Nardini
,
D.
, 1983, “
Dynamic Analysis in Solid Mechanics by an Alternative Boundary Element Procedure
,”
Int. J. Soil Dynam. Earthquake Eng.
,
2
(
4
), pp.
228
233
.
19.
Ang
,
W. T.
,
Clements
,
D. L.
, and
Vahdati
,
N.
, 2003, “
A Dual-Reciprocity Boundary Element Method for a Class of Elliptic Boundary Value Problems for Non-Homogeneous Anisotropic Media
,”
Eng. Anal. Boundary Elem.
,
27
(
1
), pp.
49
55
.
20.
Divo
,
E. A.
, and
Kassab
,
A. J.
, 2003,
Boundary Element Methods for Heat Conduction: With Applications in Non-Homogeneous Media
,
WIT, Southampton
,
UK.
21.
Fahmy
,
M. A.
, 2012, “
Numerical Modeling of Transient Magneto-Thermo-Viscoelastic Waves in a Rotating Nonhomogeneous Anisotropic Solid Under Initial Stress
,”
Int. J. Model. Simulat. Sci. Comput.
,
3
(
2
), p.
125002
.
22.
Gaul
,
L.
,
Kögl
,
M.
, and
Wagner
,
M.
, 2003,
Boundary Element Methods for Engineers and Scientists
,
Springer-Verlag
,
Berlin
.
23.
Partridge
,
P. W.
,
Brebbia
,
C. A.
, and
Wrobel
,
L. C.
, 1992,
The Dual Reciprocity Boundary Element Method
,
Computational Mechanics Publications
,
Southampton, UK
.
24.
Wrobel
,
L. C.
, and
Brebbia
,
C. A.
, 1987, “
The Dual Reciprocity Boundary Element Formulation for Nonlinear Diffusion Problems
,”
Comput. Methods Appl. Mech. Eng.
,
65
(
2
), pp.
147
164
.
25.
Yun
,
B. I.
, and
Ang
,
W. T.
, 2010, “
A Dual-Reciprocity Boundary Element Approach for Axisymmetric Nonlinear Time-Dependent Heat Conduction in a Non-Homogeneous Solid
,”
Eng. Anal. Boundary Elem.
,
34
(
8
), pp.
697
706
.
26.
Zhang
,
Y.
, and
Zhu
,
S.
, 1994, “
On the Choice of Interpolation Functions Used in the Dual-Reciprocity Boundary-Element Method
,”
Eng. Anal. Boundary Elem.
,
13
(
4
), pp.
387
396
.
27.
Abd-Alla
,
A. M.
,
El-Naggar
,
A. M.
, and
Fahmy
,
M. A.
, 2003, “
Magneto-Thermoelastic Problem in Non-Homogeneous Isotropic Cylinder
,”
Heat Mass Transfer
,
39
(
7
), pp.
625
629
.
28.
Higuchi
,
M.
,
Kawamura
,
R.
,
Tanigawa
,
Y.
, and
Adachi
,
T.
, 2010, “
Magneto-Thermo-Elastic Stresses Induced by a Transient Magnetic Field in a Conducting Hollow Circular Cylinder
,”
J. Therm. Stresses
,
33
(
8
), pp.
775
798
.
29.
Lee
,
J. L.
, and
Lin
,
C. B.
, 2010, “
The Magnetic Viscous Damping Effect on the Natural Frequency of a Beam Plate Subject to an In-Plane Magnetic Field
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
11014
.
30.
Nayfeh
,
A.
, and
Nasser
,
S. N.
, 1972, “
Electromagneto-Thermoelastic Plane Waves in Solids With Thermal Relaxation
,”
ASME J. Appl. Mech.
,
39
(
1
), pp.
108
113
.
31.
Niraula
,
O. P.
, and
Noda
,
N.
, 2010, “
Derivation of Material Constants in Non-Linear Electro-Magneto-Thermo-Elasticity
,”
J. Therm. Stresses
,
33
(
11
), pp.
1011
1034
.
32.
Roychoudhuri
,
S. K.
, and
Banerjee
,
S.
, 1998, “
Magneto-Thermoelastic Interactions in an Infinite Viscoelastic Cylinder of Temperature Dependent Material Subjected to a Periodic Loading
,”
Int. J. Eng. Sci.
,
36
(
5–6
), pp.
635
643
.
33.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L.
, 1984,
Boundary Element Techniques in Engineering
,
Springer-Verlag
,
New York
.
34.
Partridge
,
P. W.
, and
Wrobel
,
L. C.
, 1990, “
The Dual Reciprocity Boundary Element Method for Spontaneous Ignition
,”
Int. J. Numer. Methods Eng.
,
30
(
5
), pp.
953
963
.
35.
Yamada
,
T.
, and
Wrobel
,
L. C.
, 1993, “
A New Approach to Magnetic Field Analysis by the Dual Reciprocity Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
36
(
12
), pp.
2073
2085
.
36.
Albuquerque
,
E. L.
,
Sollero
,
P.
, and
Aliabadi
,
M. H.
, 2004, “
Dual Boundary Element Method for Anisotropic Dynamic Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
59
(
9
), pp.
1187
1205
.
37.
Bozkaya
,
C.
, 2008, “
A Coupled Numerical Scheme of Dual Reciprocity BEM With DQM for the Transient Elastodynamic Problems
,”
Int. J. Numer. Methods Eng.
,
76
(
7
), pp.
1108
1122
.
38.
Bulgakov
,
V.
,
Šarler
,
B.
, and
Kuhn
,
G.
, 1998, “
Iterative Solution of Systems of Equations in the Dual Reciprocity Boundary Element Method for the Diffusion Equation
,”
Int. J. Numer. Methods Eng.
,
43
(
4
), pp.
713
732
.
39.
Baiz
,
P. M.
, and
Aliabadi
,
M. H.
, 2010, “
Post Buckling Analysis of Shear Deformable Shallow Shells by the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
84
(
4
), pp.
379
433
.
40.
Benedetti
,
I.
, and
Aliabadi
,
M. H.
, 2010, “
A Fast Hierarchical Dual Boundary Element Method for Three-Dimensional Elastodynamic Crack Problems
,”
Int. J. Numer. Methods Eng.
,
84
(
9
), pp.
1038
1067
.
41.
Gaul
,
L.
, and
Kogl
,
M.
, “
A Boundary Element Method For Anisotropic Coupled Thermoelasticity
,”
Arch. Appl. Mech.
,
73
(5–6)
, pp.
377
398
.
42.
Cho
,
H. A.
,
Golberg
,
M. A.
,
Muleshkov
,
A. S.
, and
Li
,
X.
, 2004, “
Trefftz Methods for Time Dependent Partial Differential Equations
,”
CMC – Comput., Mater., Continua
,
1
(
1
), pp.
1
37
.
43.
Guiggiani
,
M.
, and
Gigante
,
A.
, 1990, “
A General Algorithm for Multidimensional Cauchy Principal Value Integrals in the Boundary Element Method
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
906
915
.
44.
Mantič
,
V.
, 1993, “
A New Formula for the C-Matrix in the Somigliana Identity
,”
J. Elast.
,
33
, pp.
191
201
.
45.
Golub
,
G. H.
, and Van
Loan
,
C. F.
, 1983,
Matrix Computations
,
North Oxford Academic
,
Oxford
.
46.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
47.
Abd-Alla
,
A. M.
,
Fahmy
,
M. A.
, and
El-Shahat
,
T. M.
, 2008, “
Magneto-Thermo-Elastic Problem of a Rotating Non-Homogeneous Anisotropic Solid Cylinder
,”
Arch. Appl. Mech.
,
78
(
2
), pp.
135
148
.
48.
Fahmy
,
M. A.
, 2012, “
A Time-Stepping DRBEM for Magneto-Thermo-Viscoelastic Interactions in a Rotating Nonhomogeneous Anisotropic Solid
,”
Int. J. Appl. Mech.
,
3
(
4
), pp.
711
734
.
49.
Fahmy
,
M. A.
, 2012, “
A Time-Stepping DRBEM for the Transient Magneto-Thermo-Visco-Elastic Stresses in a Rotating Non-Homogeneous Anisotropic Solid
,”
Eng. Anal. Boundary Elem.
,
36
(
3
), pp.
335
345
.
50.
Fahmy
,
M. A.
, 2008, “
Thermoelastic Stresses in a Rotating Non-Homogeneous Anisotropic Body
,”
Numer. Heat Transfer, Part A
,
53
(
9
), pp.
1001
1011
.
51.
Sladek
,
J.
,
Sladek
,
V.
,
Solek
,
P.
,
Tan
,
C. L.
, and
Zhang
,
Ch
., 2009, “
Two- and Three-Dimensional Transient Thermoelastic Analysis by the MLPG Method
,”
Comput. Model. Eng. Sci.
,
47
(
1
), pp.
61
95
.
52.
Sladek
,
J.
,
Sladek
,
V.
,
Solek
,
P.
, and
Zhang
,
Ch
., 2010, “
Fracture Analysis in Continuously Nonhomogeneous Magneto-Electro-Elastic Solids Under a Thermal Load by the MLPG
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1381
1391
.
You do not currently have access to this content.