Vibration behavior of structures with parallelepiped shape—including beams, plates, and solids—are critical for a broad range of practical applications. In this paper we describe a new approach, referred to here as the three-dimensional spectral-Tchebychev (3D-ST) technique, for solution of three-dimensional vibrations of parallelepipeds with different boundary conditions. An integral form of the boundary-value problem is derived using the extended Hamilton’s principle. The unknown displacements are then expressed using a triple expansion of scaled Tchebychev polynomials, and analytical integration and differentiation operators are replaced by matrix operators. The boundary conditions are incorporated into the solution through basis recombination, allowing the use of the same set of Tchebychev functions as the basis functions for problems with different boundary conditions. As a result, the discretized equations of motion are obtained in terms of mass and stiffness matrices. To analyze the numerical convergence and precision of the 3D-ST solution, a number of case studies on beams, plates, and solids with different boundary conditions have been conducted. Overall, the calculated natural frequencies were shown to converge exponentially with the number of polynomials used in the Tchebychev expansion. Furthermore, the natural frequencies and mode shapes were in excellent agreement with those from a finite-element solution. It is concluded that the 3D-ST technique can be used for accurate and numerically efficient solution of three-dimensional parallelepiped vibrations under mixed boundary conditions.

References

References
1.
Rao
,
S.
, 2007,
Vibration of Continuous Systems
,
John Wiley
,
Hoboken, NJ
.
2.
Fromme
,
J.
, and
Leissa
,
A.
, 1970, “
Free Vibration of the Rectangular Parallelepiped
,”
J. Acoust. Soc. Am.
,
48
(
1
), pp.
290
298
.
3.
Hutchinson
,
J.
, and
Zillmer
,
S.
, 1983, “
Vibration of a Free Rectangular Parallelepiped
,”
ASME J. Appl. Mech.
,
50
, pp.
123
130
.
4.
Lim
,
C.
, 1999, “
Three-Dimensional Vibration Analysis of a Cantilevered Parallelepiped: Exact and Approximate Solutions
,”
J. Acoust. Soc. Am.
,
106
(
6
), pp.
3375
3383
.
5.
Zienkiewicz
,
O.
,
Taylor
,
R.
, and
Zhu
,
J.
, 2005,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier Butterworth-Heinemann
,
Burlington, MA
.
6.
Kang
,
J.-H.
, and
Leissa
,
A.
, 1998, “
Three-Dimensional Vibrations of Thick, Linearly Tapered, Annular Plates
,”
J. Sound Vib.
,
217
(
5
), pp.
927
944
.
7.
Kang
,
J.-H.
, and
Leissa
,
A.
, 2004, “
Three-Dimensional Vibration Analysis of Thick, Complete Conical Shells
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
502
507
.
8.
Hutchinson
,
J.
, 1980, “
Vibrations of Solid Cylinders
,”
ASME J. Appl. Mech.
,
47
, pp.
901
907
.
9.
Hutchinson
,
J.
, 1981, “
Transverse Vibrations of Beams, Exact Versus Approximate Solutions
,”
ASME J. Appl. Mech.
,
48
, pp.
923
928
.
10.
Leissa
,
A.
, and
Ding
,
Z.
, 1983, “
On the Three-Dimensional Vibrations of the Cantilevered Rectangular Parallelepiped
,”
J. Acoust. Soc. Am.
,
73
(
6
), pp.
2013
2021
.
11.
Liew
,
K.
,
Hung
,
K.
, and
Lim
,
M.
, 1995, “
Free Vibration Studies on Stress-Free Three-Dimensional Elastic Solids
,”
ASME J. Appl. Mech.
,
62
, pp.
159
165
.
12.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Liew
,
K.
,
Hung
,
K.
, and
Lim
,
M.
, 1993, “
A Continuum Three-Dimensional Vibration Analysis of Thick Rectangular Plates
,”
Int. J. Solids Struct.
,
30
(
24
), pp.
3357
3379
.
14.
Liew
,
K.
,
Hung
,
K.
, and
Lim
,
M.
, 1998, “
Vibration of Thick Prismatic Structures With Three-Dimensional Flexibilities
,”
ASME J. Appl. Mech.
,
65
(
3
), pp.
619
625
.
15.
Liew
,
K.
, and
Yang
,
B.
, 1999, “
Three-Dimensional Elasticity Solutions for Free Vibrations of Circular Plates: A Polynomials-Ritz Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
175
(
1–2
), pp.
189
201
.
16.
So
,
J.
, and
Leissa
,
A.
, 1998, “
Three-Dimensional Vibrations of Thick Circular and Annular Plates
,”
J. Sound Vib.
,
209
(
1
), pp.
15
41
.
17.
Liew
,
K.
,
Peng
,
L.
, and
Ng
,
T.
, 2002, “
Three-Dimensional Vibration Analysis of Spherical Shell Panels Subjected to Different Boundary Conditions
,”
Int. J. Mech. Sci.
,
44
, pp.
2103
2117
.
18.
Zhou
,
D.
,
Au
,
F.
,
Cheung
,
Y.
, and
Lo
,
S.
, 2003, “
Three-Dimensional Vibration Analysis of Circular and Annular Plates Via the Chebyshev-Ritz Method
,”
Int. J. Solids Struct.
,
40
(
12
), pp.
3089
3105
.
19.
Zhou
,
D.
,
Cheung
,
Y.
,
Lo
,
S.
, and
Au
,
F.
, 2005, “
Three-Dimensional Vibration Analysis of Rectangular Plates With Mixed Boundary Conditions
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
227
236
.
20.
Trefethen
,
L.
, 2000,
Spectral Methods in MATLAB
,
SIAM-CBMS
,
Philadelphia, PA
.
21.
Gottlieb
,
D.
, and
Orszag
,
S.
, 1977,
Numerical Analysis of Spectral Methods, Theory and Applications
,
SIAM-CBMS
,
Philadelphia, PA
.
22.
Canuto
,
C.
,
Hussaini
,
M.
,
Quarteroni
,
A.
, and
Zang
,
T.
, 2006,
Spectral Methods, Fundamentals in Single Domains
,
Springer
,
Berlin
.
23.
Peyret
,
R.
, 2002,
Spectral Methods for Incompressible Viscous Flow
,
Springer
,
New York
.
24.
Boyd
,
P. J.
, 2001,
Chebyshev and Fourier Spectral Methods
,
2nd ed.
,
Dover
,
New York
.
25.
Yagci
,
B.
,
Filiz
,
S.
,
Romero
,
L.
, and
Ozdoganlar
,
O.
, 2009, “
A Spectral-Tchebychev Technique for Solving Linear and Non-Linear Beam Equations
,”
J. Sound Vib.
,
321
, pp.
375
404
.
26.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
, 2008, “
Micro-Endmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031119
.
27.
Timoshenko
,
S.
, and
Goodier
,
J.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
28.
Becker
,
E.
,
Carey
,
G.
, and
Oden
,
J.
, 1986,
Finite Elements Volume 1—An Introduction
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.