This paper provides asymptotic full crack-tip stress field solutions for an in-plane mixed-mode stationary crack in an anisotropic functionally graded material. A monoclinic graded material that has a material symmetry plane is considered. The complex variable approach and the asymptotic scaling factor are used to solve the governing fourth-order partial differential equation for exponentially graded anisotropic materials with gradation either parallel or perpendicular to the crack. Full crack-tip stress fields under mode-I and mode-II loading are visualized and discussed for homogeneous and exponentially graded anisotropic materials. We observe that higher-order terms are affected by material gradation and play an important role on crack-tip stress fields in functionally graded materials.

References

References
1.
Hirai
,
T.
, 1993, “
Functionally Gradient Materials and Nanocomposites
,”
Proceedings of the Second International Symposium on Functionally Gradient Materials
,
J. B.
Holt
,
M.
Koizumi
,
T.
Hirai
, and
Z. A.
Munir
, eds.,
American Ceramic Society
,
Westerville, OH
.
2.
Paulino
,
G. H.
,
Jin
,
Z. H.
, and
Dodds
,
R. H.
, Jr.
, 2003, “
Failure of Functionally Graded Materials
,”
Comprehensive Structural Integrity
, Vol.
2
,
B.
Karihaloo
and
W. G.
Knauss
, eds.,
Elsevier Science
,
New York
, Chap. 13, pp.
607
644
.
3.
Watari
,
F.
,
Yokoyama
,
A.
,
Omori
,
M.
,
Hirai
,
T.
,
Kondo
,
H.
, and
Uo
,
M.
, 2004, “
Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-Medical Application
,”
Compos. Sci. Technol.
,
66
, pp.
893
908
.
4.
Kawasaki
,
A.
, and
Watanabe
,
R.
, 2002, “
Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials
,”
Eng. Fract. Mech.
,
69
, pp.
1713
1728
.
5.
Ilschner
,
B.
, 1996, “
Processing-Microstructure-Property Relationships in Graded Materials
,”
J. Mech. Phys. Solids
,
44
(
5
), pp.
647
656
.
6.
Steinhausen
,
R.
,
Kouvatov
,
A.
,
Pientschke
,
C.
,
Langhammer
,
H.
,
T. Seifert
,
W.
,
Beige
,
H.
, and
Abicht
,
H.
, 2004, “
Ac-Poling of Functionally Graded Piezoelectric Bending Devices
,”
Integr. Ferroelectr.
,
63
, pp.
15
20
.
7.
Sampath
,
S.
,
Herman
,
H.
,
Shimoda
,
N.
, and
Saito
,
T.
, 1995, “
Thermal Spray Processing of FGMs
,”
MRS Bull.
,
20
(
1
), pp.
27
31
.
8.
Kaysser
,
W. A.
, and
Ilschner
,
B.
, 1995, “
FGM Research Activities in Europe
,”
MRS Bull.
,
20
(
1
), pp.
22
26
.
9.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1997, “
Mode I Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Eng. Sci.
,
35
(
9
), pp.
869
883
.
10.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1999, “
The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Fract.
,
98
(
3–4
), pp.
243
261
.
11.
Gu
,
L.-C.
,
Wu
,
L.-Z.
,
Zeng
,
T.
, and
Ma
,
L.
, 2004, “
Mode I Crack Problem for a Functionally Graded Orthotropic Strip
,”
Eur. J. Mech.
,
23
, pp.
219
234
.
12.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
The Interaction Integral for Fracture of Orthotropic Functionally Graded Materials: Evaluation of Stress Intensity Factors
,”
Int. J. Solids Struct.
,
40
(
15
), pp.
3967
4001
.
13.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
T-Stress, Mixed-Mode Stress Intensity Factors, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
11–12
), pp.
1463
1494
.
14.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2004, “
T-Stress in Orthotropic Functionally Graded Materials: Lekhnitskii and Stroh Formalisms
,”
Int. J. Fract.
,
126
(
4
), pp.
345
389
.
15.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2005, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
Trans. ASME J. Appl. Mech.
,
72
, pp.
351
364
.
16.
Parameswaran
,
V.
, and
Shukla
,
A.
, 2002, “
Asymptotic Stress Fields for Stationary Cracks Along the Gradient in Functionally Graded Materials
,”
Trans. ASME J. Appl. Mech.
,
69
(
3
), pp.
240
243
.
17.
Jain
,
N.
,
Rousseau
,
C. E.
, and
Shukla
,
A.
, 2004, “
Crack-Tip Stress Fields in Functionally Graded Materials With Linearly Varying Properties
,”
Theor. Appl. Fract. Mech.
,
42
, pp.
155
170
.
18.
Chalivendra
,
V. B.
, 2009, “
Mixed-Mode Crack-Tip Stress Fields for Orthotropic Functionally Graded Materials
,”
Acta Mech.
,
204
, pp.
51
60
.
19.
Zhang
,
L.
, and
Kim
,
J.-H.
, 2011, “
High-Order Terms for the Mode-III Stationary Crack-Tip Fields in a Functionally Graded Material
,”
J. Appl. Mech.
,
78
(
1
), p.
011005
.
20.
Zhang
,
L.
, and
Kim
,
J.-H.
, 2009, “
A Complex Variable Approach for Asymptotic Mode-III Cracktip Fields in an Anisotropic Functionally Graded Material
,”
Eng. Fract. Mech.
,
76
(16)
, pp.
2512
2525
.
21.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff Ltd.
,
Holland
.
22.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
,
Gordon and Breach Science Publishers
,
New York
.
23.
Yang
,
S.
, and
Yuan
,
F. G.
, 2000, “
Determination and Representation of the Stress Coefficient Terms by Path-Independent Integrals in Anisotropic Cracked Solids
,”
Int. J. Fract.
,
101
(
4
), pp.
291
319
.
24.
Pagano
,
N. J.
, 1970, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
, pp.
20
34
.
25.
Sih
,
G. C.
, and
Liebowitz
,
H.
, 1968, “
Mathematical Theories of Brittle Fracture
,”
Mechanics of Fracture
, Vol.
2
,
Academic Press
,
New York
.
26.
Karihaloo
,
B. L.
, and
Xiao
,
Q. Z.
, 2001, “
Higher Order Terms of the Crack Tip Asymptotic Field for a Notched Three-Point Bend Beam
,”
Int. J. Fract.
,
112
, pp.
111
128
.
27.
Hui
,
C. Y.
, and
Ruina
,
A.
, 1995, “
Why K? High Order Sigularities and Small Scale Yielding
,”
Int. J. Fract.
,
72
, pp.
97
120
.
You do not currently have access to this content.