A generalized finite-volume theory is proposed for two-dimensional elasticity problems on rectangular domains. The generalization is based on a higher-order displacement field representation within individual subvolumes of a discretized analysis domain, in contrast with the second-order expansion employed in our standard theory. The higher-order displacement field is expressed in terms of elasticity-based surface-averaged kinematic variables, which are subsequently related to corresponding static variables through a local stiffness matrix derived in closed form. The novel manner of defining the surface-averaged kinematic and static variables is a key feature of the generalized finite-volume theory, which provides opportunities for further exploration. Satisfaction of subvolume equilibrium equations in an integral sense, a defining feature of finite-volume theories, provides the required additional equations for the local stiffness matrix construction. The theory is constructed in a manner which enables systematic specialization through reductions to lower-order versions. Part I presents the theoretical framework. Comparison of predictions by the generalized theory with its predecessor, analytical and finite-element results in Part II illustrates substantial improvement in the satisfaction of interfacial continuity conditions at adjacent subvolume faces, producing smoother stress distributions and good interfacial conformability.

References

1.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Prentice Hall
,
New York
.
2.
Demirdzic
,
I.
,
Martinovic
,
D.
, and
Ivankovic
,
A.
, 1988, “
Numerical Simulation of Thermomechanical Deformation Processes in a Welded Work-Piece
,”
Zavarivanje
,
31
, pp.
209
219
(in Serbo-Croat).
3.
Fryer
,
Y. D. C.
,
Bailey
,
C.
,
Cross
,
M.
, and
Lai
,
C.-H.
, 1991, “
A Control Volume Procedure for Solving the Elastic Stress-Strain Equations on an Unstructured Mesh
,”
Appl. Math. Model.
,
15
, pp.
639
645
.
4.
Demirdzic
,
I.
, and
Martinovic
,
D.
, 1993, “
Finite Volume Method for Thermo-Elastic-Plastic Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
109
, pp.
331
349
.
5.
Demirdzic
,
I.
, and
Muzaferija
,
S.
, 1994, “
Finite Volume Method for Stress Analysis in Complex Domains
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
3751
3766
.
6.
Bailey
,
C.
, and
Cross
,
M.
, 1995, “
A Finite Volume Procedure to Solve Elastic Solid Mechanics Problems in Three Dimensions on an Unstructured Mesh
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1757
1776
.
7.
Taylor
,
G. A.
,
Bailey
,
C.
, and
Cross
,
M.
, 1995, “
Solutions of the Elastic/Visco-Plastic Constitutive Equations: A Finite Volume Approach
,”
Appl. Math. Model.
,
19
, pp.
746
760
.
8.
Wheel
,
M. A.
, 1996, “
A Finite-Volume Approach to the Stress Analysis of Pressurized Axisymmetric Structures
,”
Int. J. Pressure Vessels Piping
,
68
, pp.
311
317
.
9.
Taylor
,
G. A.
,
Bailey
,
C.
, and
Cross
,
M.
, 2003, “
A Vertex-Based Finite Volume Method Applied to Non-Linear Material Problems in Computational Solid Mechanics
,”
Int. J. Numer. Methods Eng.
,
56
, pp.
507
529
.
10.
Wenke
,
P.
, and
Wheel
,
M. A.
, 2003, “
A Finite Volume Method for Solid Mechanics Incorporating Rotational Degrees of Freedom
,”
Comput. Struct.
,
81
, pp.
321
329
.
11.
Fallah
,
N.
, 2004, “
A Cell Vertex and Cell Centred Finite Volume Method for Plate Bending Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
3457
3470
.
12.
Fallah
,
N.
, 2005, “
A New Approach in Cell Centred Finite Volume Formulation for Plate Bending Analysis
,”
Int. Conf. Comput. Methods Sci. and Eng. (ICCMSE 2005), Lect. Ser. Comput. Comput. Sci.
,
4
, pp.
187
190
.
13.
Fallah
,
N.
, 2005, “
Using Shape Function in Cell Centred Finite Volume Formulation for Two Dimensional Stress Analysis
,”
Int. Conf. Comput. Methods Sci. and Eng. (ICCMSE 2005), Lect. Ser. Comput. Comput. Sci.
,
4
, pp.
183
186
.
14.
Fallah
,
N.
, 2006, “
On the Use of Shape Functions in the Cell Centered Finite Volume Formulation for Plate Bending Analysis Based on Mindlin-Reissner Plate Theory
,”
Comput. Struct.
,
84
, pp.
1664
1672
.
15.
Basic
,
H.
,
Demirdzic
,
I.
, and
Muzaferija
,
S.
, 2005, “
Finite Volume Method for Simulation of Extrusion Processes
,”
Int. J. Numer. Methods Eng.
,
62
, pp.
475
494
.
16.
Bijelonja
,
I.
,
Demirdzic
,
I.
, and
Muzaferija
,
S.
, 2006, “
A Finite Volume Method for Incompressible Linear Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
6378
6390
.
17.
Wheel
,
M. A.
, 2008, “
A Control Volume-Based Finite Element Method for Plane Micropolar Elasticity
,”
Int. J. Numer. Methods Eng.
,
75
, pp.
992
1006
.
18.
Paulino
,
G. H.
,
Pindera
,
M.-J.
,
Dodds
,
R. H.
,
Rochinha
,
F. E.
,
Dave
,
E. V.
, and
Chen
,
L.
, 2008, “
Multiscale and Functionally Graded Materials
,”
AIP Conf. Proc.
,
973
,
Melville
,
New York
.
19.
Achenbach
,
J. D.
, 1975,
A Theory of Elasticity With Microstructure for Directionally Reinforced Composites
,
Springer-Verlag
,
New York
.
20.
Cavalcante
,
M. A. A.
, 2006, “
Modelling of the Transient Thermo-Mechanical Behavior of Composite Material Structures by the Finite-Volume Theory
,” M.S. thesis, Federal University of Alagoas, Maceio, Alagoas, Brazil.
21.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials Part I: Analysis
,”
J. Appl. Mech.
,
74
(
5
), pp.
935
945
.
22.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials Part II: Numerical Results
,”
J. Appl. Mech.
,
74
(
5
), pp.
946
957
.
23.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2003, “
Efficient Reformulation of the Thermoelastic Higher-Order Theory for FGMs
,”
J. Therm. Stresses
,
26
(
11–12
), pp.
1055
1092
.
24.
Zhong
,
Y.
,
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2004, “
Efficient Reformulation of the Thermal Higher-Order Theory for FGM’s With Variable Thermal Conductivity
,”
Int. J. Comput. Eng. Sci.
,
5
(
4
), pp.
795
831
.
25.
Gattu
,
M.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Pindera
,
M.-J.
, 2008, “
Parametric Finite-Volume Micromechanics of Uniaxial, Continuously-Reinforced Periodic Materials With Elastic Phases
,”
J. Eng. Mater. Technol.
,
130
(
3
), p.
31015
.
26.
Khatam
,
H.
, and
Pindera
,
M.-J.
, 2009, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plast.
,
25
(
7
), pp.
1386
1411
.
27.
Khatam
,
H.
, and
Pindera
,
M.-J.
, 2010, “
Plasticity-Triggered Architectural Effects in Periodic Multilayers With Wavy Microstructures
,”
Int. J. Plast.
,
26
(
2
), pp.
273
287
.
28.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
J. Appl. Mech.
,
72
, pp.
177
195
.
29.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2006, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
,
22
(
5
), pp.
775
825
.
30.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 1999, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
,
30
(
8
), pp.
777
832
.
31.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 2001, “
Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials
,”
J. Appl. Mech.
,
68
(
5
), pp.
697
707
.
32.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2008, “
Computational Aspects of the Parametric Finite-Volume Theory for Functionally Graded Materials
,”
J. Comput. Mater. Sci.
,
44
, pp.
422
438
.
33.
Pan
,
W.
,
Wheel
,
M. A.
, and
Qin
,
Y.
, 2010, “
Six-Node Triangle Finite Volume Method for Solids With a Rotational Degree of Freedom for Incompressible Material
,”
Comput. Struct.
,
88
, pp.
1506
1511
.
34.
Cavalcante
,
M. A. A.
,
Khatam
,
H.
, and
Pindera
,
M.-J.
, 2011, “
Homogenization of Elastic-Plastic Periodic Materials by FVDAM and FEM Approaches—An Assessment
,”
Composites, Part B
,
42
(
6
), pp.
1713
1730
.
You do not currently have access to this content.