The effect of transpiration on unsteady two-dimensional flow of an MHD non-Newtonian Maxwell fluid over a stretching surface in the presence of a heat source/sink is investigated. The upper convected Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Using a similarity transformation the governing partial differential equations of the problem are reduced to a system of ordinary differential equations (ODEs), and the ODEs are solved numerically by a shooting method. The flow features and the heat transfer characteristics are analyzed and discussed in detail for several sets of values of the governing parameters. Though the velocity of the fluid initially decreases with increasing unsteady parameter but it increases finally. Quite the opposite is true with the temperature. Furthermore, the velocity of the fluid decreases with an increasing magnetic or Maxwell parameter. But the temperature is enhanced with an increasing Maxwell parameter. It is observed that the effect of the transpiration is to decrease the fluid velocity as well as the temperature. The results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

References

References
1.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2008, “
Hydromagnetic Flow and Heat Transfer Adjacent to a Stretching Vertical Sheet
,”
Heat Mass Transfer
,
44
, pp.
921
927
.
2.
Gupta
,
P. S.
, and
Gupta
,
A. S.
, 1977, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.
3.
Vleggaar
,
J.
, 1977, “
Laminar Boundary-Layer Behavior on Continuous Accelerating Surfaces
,”
Chem. Eng. Sci.
,
32
, pp.
1517
1525
.
4.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
, 1985, “
Temperature Field in Flow Over a Stretching Sheet With Uniform Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
12
, pp.
89
94
.
5.
Crane
,
L. J.
, 1970, “
Flow Past a Stretching Plate
,”
ZAMP
,
21
, pp.
645
647
.
6.
Liu
,
I. C.
, and
Andersson
,
H. I.
, 2008, “
Heat Transfer in a Liquid Film on an Unsteady Stretching Sheet
,”
Int. J. Therm. Sci.
,
47
, pp.
766
772
.
7.
Sadeghy
,
K.
, and
Sharifi
,
M.
, 2004, “
Local Similarity Solution for the Flow of a ‘Second-Grade’ Viscoelastic Fluid Above a Moving Plate
,”
Int. J. Non-Linear Mech.
,
39
, pp.
1265
1273
.
8.
Serdar
,
B.
, and
Salih Dokuz
,
M.
, 2006, “
Three-Dimensional Stagnation Point Flow of a Second Grade Fluid Towards a Moving Plate
,”
Int. J. Eng. Sci.
,
44
, pp.
49
58
.
9.
Haroun
,
M. H.
, 2007, “
Effect of Deborah Number and Phase Difference on Peristaltic Transport of a Third-Order Fluid in an Asymmetric Channel
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
, pp.
1464
1480
.
10.
Hassanien
,
I. A.
, 1996, “
Flow and Heat Transfer on a Continuous Flat Surface Moving in a Parallel Free Stream of Power-Law Fluid
,”
Appl. Math. Model.
,
20
, pp.
779
784
.
11.
Andersson
,
H. I.
, and
Dandapat
,
B. S.
, 1992, “
Flow of a Power-Law Fluid Over a Stretching Sheet
,”
Appl. Anal. Continuous Media
,
1
, pp.
339
347
.
12.
Siddiqui
,
A. M.
,
Zeb
,
A.
,
Ghori
,
Q. K.
, and
Benharbit
,
A. M.
, 2008, “
Homotopy Perturbation Method for Heat Transfer Flow of a Third Grade Fluid Between Parallel Plates
,”
Chaos, Solitons Fractals
,
36
, pp.
182
192
.
13.
Sajid
,
M.
,
Ahmad
,
I.
,
Hayat
,
T.
, and
Ayub
,
M.
, 2009, “
Unsteady Flow and Heat Transfer of a Second Grade Fluid Over a Stretching Sheet
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
96
108
.
14.
Heyhat
,
M. M.
, and
Khabazi
,
N.
, 2011, “
Non-Isothermal Flow of Maxwell Fluids Above Fixed Flat Plates Under the Influence of a Transverse Magnetic Field
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
225
, pp.
909
916
.
15.
Mukhopadhyay
,
S.
,
Layek
,
G. C.
, and
Samad
,
S. A.
, 2005, “
Study of MHD Boundary Layer Flow Over a Heated Stretching Sheet With Variable Viscosity
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4460
4466
.
16.
Hameed
,
M.
, and
Nadeem
,
S.
, 2007, “
Unsteady MHD Flow of a Non-Newtonian Fluid on a Porous Plate
,”
J. Math. Anal. Appl.
,
325
, pp.
724
733
.
17.
Chien
,
C. H.
, 2008, “
Effects of Magnetic Field and Suction/Injection on Convection Heat Transfer of Non-Newtonian Power-Law Fluids Past a Power-Law Stretched Sheet With Surface Heat Flux
,”
Int. J. Therm. Sci.
,
47
, pp.
954
961
.
18.
Hayat
,
T.
,
Fetecau
,
C.
, and
Sajid
,
M.
, 2008, “
On MHD Transient Flow of a Maxwell Fluid in a Porous Medium and Rotating Frame
,”
Phys. Lett. A
,
372
, pp.
1639
1644
.
19.
Sadeghy
,
K.
,
Khabazi
,
N.
, and
Taghavi
,
S. M.
, 2007, “
Magnetohydrodynamic (MHD) Flows of Viscoelastic Fluids in Converging/Diverging Channels
,”
Int. J. Eng. Sci.
,
45
, pp.
923
938
.
20.
Hayat
,
T.
,
Abbas
,
Z.
, and
Sajid
,
M.
, 2006, “
Series Solution for the Upper-Convected Maxwell Fluid Over a Porous Stretching Plate
,”
Phys. Lett. A
,
358
, pp.
396
403
.
21.
Kumaran
,
V.
,
Banerjee
,
A. K.
,
Kumar
,
A. V.
, and
Vajravelu
,
K.
, 2008, “
MHD Flow Past a Stretching Permeable Sheet
,”
Appl. Math. Comput.
,
210
(
1
), pp.
26
32
.
22.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
, 2009, “
The Effects of Transpiration on the Flow and Heat Transfer Over a Moving Permeable Surface in a Parallel Stream
,”
Chem. Eng. J.
,
148
, pp.
63
67
.
23.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
, 1993, “
The Effects of Blowing and Suction on Free Convection Boundary Layers on Vertical Surfaces With Prescribed Heat Flux
,”
J. Eng. Math.
,
27
(
3
), pp.
265
292
.
24.
Andersson
,
H. I.
,
Aarseth
,
J. B.
, and
Dandapat
,
B. S.
, 2000, “
Heat Transfer in a Liquid Film on an Unsteady Stretching Surface
, Int. J. Heat Mass Transfer
,
43
, pp.
69
74
.
25.
Dandapat
,
B. S.
,
Santra
,
B.
, and
Andersson
,
H. I.
, 2003, “
Thermocapillarity in a Liquid Film on an Unsteady Stretching Surface
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3009
3015
.
26.
Ali
,
M. E.
, and
Magyari
,
E.
, 2007, “
Unsteady Fluid and Heat Flow Induced By a Submerged Stretching Surface While its Steady Motion is Slowed Down Gradually
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
188
195
.
27.
Dandapat
,
B. S.
,
Santra
,
B.
, and
Vajravelu
,
K.
, 2007, “
The Effects of Variable Fluid Properties and Thermocapillarity on the Flow of a Thin Film on an Unsteady Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
991
996
.
28.
Elbashbeshy
,
E. M. A.
, and
Bazid
,
M.A.A.
, 2004, “
Heat Transfer Over an Unsteady Stretching Surface
,”
Heat Mass Transfer
,
41
, pp.
1
4
.
29.
Sharidan
,
S.
,
Mahmood
,
T.
, and
Pop
,
I.
, 2006, “
Similarity Solutions for the Unsteady Boundary Layer Flow and Heat Transfer Due to a Stretching Sheet
,”
Int. J. Appl. Mech. Eng.
,
11
(
3
), pp.
647
654
.
30.
Mukhopadhyay
,
S.
, 2009, “
Effect of Thermal Radiation on Unsteady Mixed Convection Flow and Heat Transfer Over a Porous Stretching Surface in Porous Medium
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3261
3265
.
31.
Mukhopadhyay
,
S.
, 2011, “
Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Porous Stretching Surface
,”
Nucl. Eng. Des.
,
241
, pp.
2660
2665
.
32.
Tsai
,
R.
,
Huang
,
K. H.
, and
Huang
,
J. S.
, 2008, “
Flow and Heat Transfer Over an Unsteady Stretching Surface With a Non-Uniform Heat Source
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
1340
1343
.
33.
Chamkha
,
A. J.
,
Aly
,
A. M.
, and
Mansour
,
M. A.
, 2010, “
Similarity Solution for Unsteady Heat and Mass Transfer From a Stretching Surface Embedded in a Porous Medium With Suction/Injection and Chemical Reaction Effects
,”
Chem. Eng. Commun.
,
197
, pp.
846
858
.
34.
Rajgopal
,
K. R.
, 1995, “
Boundary Layers in Non-Linear Fluids
,” Trends in Applications of Mathematics to Mechanics (Pittman Monographs and Surveys in Pure and Applied Mathematics), M. D. P. Monteivo Marques and J. F. Rodrigues, eds. Longman, London,
77
, pp.
209
218
.
You do not currently have access to this content.