The dynamics of a walnut tree is investigated in order to better understand the mechanical interaction of trees with wind. Experimental data on the vibrational modes of the tree are obtained, using pull and release tests. These results are then used to validate a previous analytical approach that predicts the organization of modal frequencies as a function of two allometry parameters describing the branched tree geometry. In addition to these experimental results, vibration modes are also obtained from a finite element computation using a detailed digitization of the tree geometry. The comparison between experiments, computation, and the simple analytical approach confirm the specific organization of modes of such branched trees, with a high modal density and a spatial localization. Then the possible biological importance of this organization and the potential biomimetic applications are outlined.

References

References
1.
de Langre
,
E.
, 2008, “
Effects of Wind on Plants
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
141
168
.
2.
Gardiner
,
B.
, and
Quine
,
C.
, 2000, “
Management of Forests to Reduce the Risk of Abiotic Damage – A Review With Particular Reference to the Effects of Strong Winds
,”
Forest Ecol. Manage.
,
135
, pp.
261
277
.
3.
Moulia
,
B.
,
Coutand
,
C.
, and
Lenne
,
C.
, 2006, “
Posture Control and Skeletal Mechanical Acclimation in Terrestrial Plants: Implications for Mechanical Modeling of Plant Architecture
,”
Am. J. Bot.
,
93
, pp.
1477
1489
.
4.
Castro-García
,
S.
,
Blanco-Roldán
,
G.
,
Gil-Ribes
,
J.
, and
Aguera-Vega
,
J.
, 2008, “
Dynamic Analysis of Olive Trees in Intensive Orchards Under Forced Vibration
,”
Trees
,
22
(
6
), pp.
795
802
.
5.
Diener
,
J.
,
Rodriguez
,
M.
,
Baboud
,
L.
, and
Reveret
,
L.
, 2009, “
Wind Projection Basis for Real-Time Animation of Trees
,”
Comput. Graph. Forum
,
28
(
2
), pp.
533
540
.
6.
Py
,
C.
,
de Langre
,
E.
, and
Moulia
,
B.
, 2006, “
A Frequency Lock-In Mechanism in the Interaction Between Wind and Crop Canopies
,”
J. Fluid Mech.
,
568
, pp.
425
449
.
7.
Mayer
,
H.
, 1987, “
Wind-Induced Tree Sways
,”
Trees
,
1
(
4
), pp.
195
206
.
8.
Gardiner
,
B.
,
Peltola
,
H.
, and
Kellomaki
,
S.
, 2000, “
Comparison of Two Models for Predicting the Critical Wind Speeds Required to Damage Coniferous Trees
,”
Ecol. Modell.
,
129
(
1
), pp.
1
23
.
9.
James
,
K.
,
Haritos
,
N.
, and
Ades
,
P.
, 2006, “
Mechanical Stability of Trees Under Dynamic Loads
,”
Am. J. Bot.
,
93
, pp.
1522
1530
.
10.
Fournier
,
M.
,
Rogier
,
P.
,
Costes
,
E.
, and
Jaeger
,
M.
, 1993, “
A Mechanical Model of Wind-Induced Natural Sways of Trees Related to Branching Patterns
,”
Annales des Sciences Forestieres
,
50
, pp.
401
412
.
11.
Sellier
,
D.
, and
Fourcaud
,
T.
, 2009, “
Crown Structure and Wood Properties: Influence on Tree Sway and Response to High Winds
,”
Am. J. Bot.
,
96
(
5
), pp.
885
896
.
12.
Leung
,
A.
, 2010, “
Dynamic Substructure Method for Elastic Fractal Structures
,”
Comput. Struct.
,
89
, pp.
302
315
.
13.
Sapoval
,
B.
,
Félix
,
S.
, and
Filoche
,
M.
, 2008, “
Localisation and Damping in Resonators With Complex Geometry
,”
Eur. Phys. J. Spec. Top.
,
161
(
1
), pp.
225
232
.
14.
Rodriguez
,
M.
,
de Langre
,
E.
, and
Moulia
,
B.
, 2008, “
A Scaling Law for the Effects of Architecture and Allometry on Tree Vibration Modes Suggests a Biological Tuning to Modal Compartmentalization
,”
Am. J. Bot.
,
95
(
12
), pp.
1523
1537
.
15.
Rudnicki
,
M.
, and
Burns
,
D.
, 2006, “
Branch Sway Period of Four Tree Species Using 3D Motion Tracking
,”
Proceedings of the 5th Plant Biomechanics Conference
, pp.
25
31
.
16.
Sinoquet
,
H.
, and
Rivet
,
P.
, 1997, “
Measurement and Visualization of the Architecture of an Adult Tree Based on a Three-Dimensional Digitising Device
,”
Trees
,
11
, pp.
265
270
.
17.
Verpeaux
,
P.
,
Charras
,
T.
, and
Millard
,
A.
, 1988,
Castem 2000: Une approche moderne du calcul des structures
,
Pluralis
,
Paris, France
, pp.
261
271
.
18.
Spatz
,
H.
,
Bruchert
,
F.
, and
Pfisterer
,
J.
, 2007, “
Multiple Resonance Damping or How do Trees Escape Dangerously Large Oscillations?
,”
Am. J. Bot.
,
94
, pp.
1603
1611
.
19.
Watt
,
M.
,
Moore
,
J.
, and
McKinlay
,
B.
, 2005, “
The Influence of Wind on Branch Characteristics of Pinus Radiata
,”
Trees
,
19
(
1
), pp.
58
65
.
20.
Moulia
,
B.
,
Der Loughian
C.
,
Bastien
,
R.
,
Martin
,
L.
,
Rodríguez
,
M.
,
Gourcilleau
,
D.
,
Barbacci
,
A.
,
Badel
,
E.
,
Franchel
,
J.
,
Lenne
,
C.
,
Roeckel-Drevet
,
P.
,
Allain
,
J.-M.
,
Frachisse
,
J.-M.
,
de Langre
,
E.
,
Coutand
,
C.
,
Fournier-Leblanc
,
N.
, and
Julien
,
J.-L.
, 2011, “
Integrative Mechanobiology of Growth and Architectural Development in Changing Mechanical Environments
,”
Mechanical Integration of Plant Cells and Plants, Springer Series: Signaling and Communication in Plants
,
P.
Wojtaszek
, ed.,
Springer-Verlag
,
Berlin
, pp.
269
302
.
21.
Theckes
,
B.
,
Boutillon
,
X.
, and
de Langre
,
E.
, 2011, “
Damping by Branching: A Bioinspiration From Trees
,”
Bioinspiration Biomech.
,
6
(
4
), p.
046010
.
You do not currently have access to this content.