The objective of this work is to investigate the quasi-static plastic behavior of a fully clamped metal foam core sandwich beam transversely loaded by a flat punch. A rigid-plastic beam-on-foundation model is extended to study the local denting deformation of a metal foam core sandwich beam. The effects of local denting and core strength on the overall deformation are incorporated in the analysis. Analytical solutions are derived for three different regimes of post-yield deformation mechanisms. Additionally, finite element results are obtained. Comparisons of the present analytical predictions with numerical, previous experimental, and analytical results are presented, respectively. It is shown that local denting has a significant effect on the finite deflection response of the metal foam core sandwich structure. The load-carrying and energy absorption capacities of sandwich beams may be overestimated if the effect of local denting is neglected in analysis. It is demonstrated that the present analytial model can reasonably predict the behaviors of post-yield deformation of sandwich beams. Moreover, the present analytical method can be extended to predict the low velocity/energy impact problems of sandwich structures.

References

References
1.
Noor
,
A. K.
,
Burton
,
W. S.
, and
Bert
,
C. W.
, 1996, “
Computational Models for Sandwich Panels and Shells
,”
Appl. Mech. Rev.
,
49
(
3
), pp.
155
199
.
2.
Gibson
,
L. J.
and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
3.
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Ashby
,
M. F.
, 1999, “
Multifunctionality of Cellular Metal Systems
,”
Prog. Mater. Sci.
,
43
(
3
), pp.
171
221
.
4.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
, 2001, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.
5.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinsion
,
J. W.
, and
Wadley
,
H. N. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth Heinemann
,
Oxford
.
6.
Allen
,
H. G.
, 1969,
Analysis and Design of Structural Sandwich Panels
,
Pergamon
,
Oxford
.
7.
Bart-Smith
,
H.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2001, “
Measurement and Analysis of the Structural Performance of Cellular Metal Sandwich Construction
,”
Int. J. Mech. Sci.
,
43
(
8
), pp.
1945
1963
.
8.
McCormack
,
T. M.
,
Miller
,
R.
,
Kesler
,
O.
, and
Gibson
,
L. J.
, 2001, “
Failure of Sandwich Beams with Metallic Foam Cores
,”
Int. J. Solids Struct.
,
38
(
28–29
), pp.
4901
4920
.
9.
Chen
,
C.
,
Harte
,
A. M.
, and
Fleck
,
N. A.
, 2001, “
The Plastic Collapse of Sandwich Beams with a Metallic Foam Core
,”
Int. J. Mech. Sci.
,
43
(
6
), pp.
1483
1506
.
10.
Harte
,
A. M.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 2000, “
Sandwich Panel Design Using Aluminum Alloy Foam
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
219
222
.
11.
Harte
,
A. M.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 2001, “
The Fatigue Strength of Sandwich Beams With an Aluminium Alloy Foam Core
,”
Int. J. Fatigue
,
23
(
6
), pp.
499
507
.
12.
Kesler
,
O.
and
Gibson
,
L. J.
, 2002, “
Size Effects in Metallic Foam Core Sandwich Beams
,”
Mater. Sci. Eng., A
,
326
(
2
), pp.
228
234
.
13.
Kesler
,
O.
,
Crews
,
L. K.
, and
Gibson
,
L. J.
, 2003, “
Creep of Sandwich Beams With Metallic Foam Cores
,”
Mater. Sci. Eng., A
,
341
(
1–2
), pp.
264
272
.
14.
Steeves
,
C. A.
and
Fleck
,
N. A.
, 2004, “
Material Selection in Sandwich Beam Construction
,”
Scr. Mater.
,
50
(
10
), pp.
1335
1339
.
15.
Raj
,
S. V.
and
Ghosn
,
L. J.
, 2008, “
Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels
,”
Mater. Sci. Eng., A
,
474
(
1–2
), pp.
88
95
.
16.
Soden
,
P. D.
, 1996, “
Indentation of Composite Sandwich Beams
,”
J. Strain Anal. Eng. Des.
,
31
(
5
), pp.
353
360
.
17.
Shuaeib
,
F. M.
and
Soden
,
P. D.
, 1997, “
Indentation Failure of Composite Sandwich Beams
,”
Compos. Sci. Technol.
,
57
(
9–10
), pp.
1249
1259
.
18.
Miller
,
R. E.
, 2000, “
A Continuum Plasticity Model for the Constitutive and Indentation Behaviour Of Foamed Metals
,”
Int. J. Mech. Sci.
,
42
(
4
), pp.
729
754
.
19.
Zenkert
,
D.
,
Shipsha
,
A.
, and
Persson
,
K.
, 2004, “
Static Indentation and Unloading Response of Sandwich Beams
,”
Composites, Part B
,
35
(
6–8
), pp.
511
522
.
20.
Steeves
,
C. A.
and
Fleck
,
N. A.
, 2004, “
Collapse Mechanisms of Sandwich Beams With Composite Faces and a Foam Core, Loaded in Three-Point Bending. Part I: Analytical Models and Minimum Weight Design
,”
Int. J. Mech. Sci.
,
46
(
4
), pp.
561
583
.
21.
Steeves
,
C. A.
and
Fleck
,
N. A.
, 2004, “
Collapse Mechanisms of Sandwich Beams With Composite Faces and a Foam Core, Loaded in Three-Point Bending. Part II: Experimental Investigation and Numerical Modelling
,”
Int. J. Mech. Sci.
,
46
(
4
), pp.
585
608
.
22.
Tagarielli
,
V. L.
and
Fleck
,
N. A.
, 2005, “
A Comparison of the Structural Response of Clamped and Simply Supported Sandwich Beams With Aluminium Faces and a Metal Foam Core
,”
ASME Trans. J. Appl. Mech.
,
72
(
3
), pp.
408
417
.
23.
Rubino
,
V.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2008, “
The Collapse Response of Sandwich Beams With a Y-Frame Core Subjected to Distributed and Local Loading
,”
Inte. J. Mech. Sci.
,
50
(
2
), pp.
233
246
.
24.
Rubino
,
V.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
, 2010, “
The Three-Point Bending of Y-Frame and Corrugated Core Sandwich Beams
,”
Int. J. Mech. Sci.
,
52
(
3
), pp.
485
494
.
25.
Bart-Smith
,
H.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2002, “
Influence of Imperfections on the Performance of Metal Foam Core Sandwich Panels
,”
Int. J. Solids Struct.
,
39
(
19
), pp.
4999
5012
.
26.
Lim
,
T. S.
,
Lee
,
C. S.
, and
Lee
,
D. G.
, 2004, “
Failure Modes of Foam Core Sandwich Beams Under Static and Impact Loads
,”
J. Compos. Mater.
,
38
(
18
), pp.
1639
1662
.
27.
Tagarielli
,
V. L.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
, 2004, “
Collapse of Clamped and Simply Supported Composite Sandwich Beams in Three-Point Bending
,”
Composites, Part B
,
35
(
6–8
), pp.
523
534
.
28.
Crupi
,
V.
and
Montanini
,
R.
, 2007, “
Aluminium Foam Sandwiches Collapse Modes Under Static and Dynamic Three-Point Bending
,”
Int. J. Impact Eng.
,
34
(
3
), pp.
509
521
.
29.
Yu
,
J. L.
,
Wang
,
E. H.
,
Li
,
J. R.
, and
Zheng
,
Z. J.
, 2008, “
Static and Low-Velocity Impact Behavior of Sandwich Beams With Closed-Cell Aluminum-Foam Core in Three-Point Bending
,”
Int. J. Impact Eng.
,
35
(
8
), pp.
885
894
.
30.
Qin
,
Q. H.
and
Wang
,
T. J.
, 2008, “
Analytical Solution for the Large Deflection of Fully Clamped Metallic Foam Sandwich Beam
,”
Adv. Mater. Res.
,
33–37
, pp.
559
565
.
31.
Qin
,
Q. H.
and
Wang
,
T. J.
, 2009, “
An Analytical Solution for the Large Deflections of a Slender Sandwich Beam With a Metallic Foam Core Under Transverse Loading by a Flat Punch
,”
Compos. Struct.
,
88
(
4
), pp.
509
518
.
32.
Qin
,
Q. H.
and
Wang
,
T. J.
, 2011, “
Low-velocity heavy-mass impact response of slender metal foam core sandwich beam
,”
Compos. Struct.
,
93
(
6
), pp.
1526
1537
.
33.
Onat
,
E. T.
and
Prager
,
W.
, 1953, “
Limit Analysis of Arches
,”
J. Mech. Phys. Solids
,
1
(
2
), pp.
77
89
.
34.
Haythornwaite
,
R. M.
, 1957, “
Beams With Full End Fixity
,”
Engineering (London)
183
, pp.
110
112
.
35.
Schubak
,
R. B.
,
Olson
,
M. D.
, and
Anderson
,
D. L.
, 1987, “
Simplified Rigid-Plastic Beam Analysis
,”
ASME Trans. J. Appl. Mech.
,
54
(
3
), pp.
720
722
.
36.
Jones
,
N.
, 1989,
Structural Impact
,
Cambridge University
,
Cambridge, UK
.
37.
Bostrom
,
P. O.
, 1975, “
Collapse Modes of a Rigid-Plastic Beam on a Rigid-Plastic Foundation
,”
Int. J. Mech. Sci.
,
17
(
1
), pp.
73
84
.
38.
Fleck
,
N. A.
and
Deshpande
,
V. S.
, 2004, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME Trans. J. Appl. Mech.
,
71
(
3
), pp.
386
401
.
39.
Qin
,
Q. H.
and
Wang
,
T. J.
, 2009, “
A Theoretical Analysis of the Dynamic Response of Metallic Sandwich Beam Under Impulsive Loading
,”
Eur. J. Mech. A/Solids
,
28
(
5
), pp.
1014
1025
.
40.
Qin
,
Q. H.
,
Wang
,
T. J.
, and
Zhao
,
S. Z.
, 2009, “
Large Deflections of Metallic Sandwich and Monolithic Beams Under Locally Impulsive Loading
,”
Int. J. Mech. Sci.
,
51
(
11–12
), pp.
752
773
.
41.
Deshpande
,
V. S.
and
Fleck
,
N. A.
, 2000, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
42.
Chen
,
C.
, 1998, “
Manual for a UMAT User Subroutine
,” Cambridge University Engineering Department, Report No. CUED/C-MICROMECH/TR. 4.
You do not currently have access to this content.