This paper addresses the problem of the aerothermoelastic modeling behavior and analyses of skin curved panels with static and dynamic edge movability effect in high supersonic flow. Flutter and post-flutter behavior will be analyzed toward determining under which conditions such panels will exhibit a benign instability, that is a stable limit cycle oscillation, or a catastrophic instability, that is an unstable LCO. The aerothermoelastic governing equations are developed from the geometrically non-linear theory of infinitely long two dimensional curved panels. Von Kármán non-linear strain-displacement relation in conjunction with the Kirchhoff plate-hypothesis is adopted. A geometrically imperfect curved panel forced by a supersonic/hypersonic unsteady flow is numerically investigated using Galerkin approach. These equations are based on the third-order piston theory aerodynamic for modeling the flow-induced forces. Furthermore, the effects of thermal degradation and Kelvin’s model of structural damping independent of time and temperature are also considered in this model. Computational analysis and discussion of the finding along with pertinent conclusions are presented.

References

References
1.
Dowell
,
E. H.
,
Edwards
,
J.
, and
Strganac
,
T. W.
, 2003, “
Non-linear Aeroelasticity
,”
J. Aircr.
,
5
(
40
), pp.
857
874
.
2.
Dowell
,
E. H.
, 1974,
Aeroelasticity of Plates and Shells
,
Kluwer Academic
,
Dordrecht
, pp.
35
49
.
3.
Dowell
,
E. H.
, 1972, “
Panel flutter
,” NASA SP-8004.
4.
Dugundji
,
J.
, 1966, “
Theoretical Considerations of Panel Flutter at High Supersonic Mach Numbers
,”
AIAA J.
,
4
(
7
), pp.
1257
1266
.
5.
Librescu
,
L.
,
Marzocca
,
P.
, and
Silva
,
W. A.
, 2002, “
Supersonic/Hypersonic Flutter and Postflutter of Geometrically Imperfect Circular Cylindrical Panels
,”
J. Spacecr. Rockets
,
39
(
5
), pp.
802
812
.
6.
Bolotin
,
V. V.
, 1963,
Non-Conservative Problems of the Theory of Elastic Stability
,
1st ed.
, Corrected and Authorized ed.,
G.
Herrmann
, ed.,
Pergamon
,
New York
, Chap. 4, pp.
199
306
(translated from Russian).
7.
Librescu
,
L.
, 1965, “
Aeroelastic Stability of Orthotropic Heterogeneous Thin Panels in the Vicinity of the Flutter Critical Boundary
,”
Journal de M′ecanique
,
4
Part 1, pp.
51
76
.
8.
Librescu
,
L.
, 1975,
Aeroelastic Stability of Anisotropic Multilayered Thin Panels. Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures
,
Noordhoff, Leyden
, pp.
53
63
; 106–158.
9.
Ashley
,
H.
, and
Zartarian
,
G.
, 1956, “
Piston Theory–a New Aerodynamic Tool for the Aeroelastician
,”
J. Aerosp. Sci.
,
23
(
10
), pp.
1109
1118
.
10.
Bisplinghoff
,
R. L.
, and
Ashley
,
H.
, 1996,
Principles of Aeroelasticity
, Dover, New York,
217
234
.
11.
Dowell
,
E. H.
, 1966, “
Non-linear Oscillations of a Fluttering Plate
,”
AIAA J.
,
4
(
7
), pp.
1267
1275
.
12.
Dowell
,
E. H.
, 1967, “
Non-linear Oscillations of a Fluttering Plate II
,”
AIAA J.
,
5
(
10
), pp.
1856
1862
.
13.
Dowell
,
E. H.
, 1970, “
Panel Flutter: A Review of the Aeroelastic Stability of Plates and Shells
,”
AIAA J.
,
8
(
3
), pp.
385
399
.
14.
Moon
,
F. C.
, 1992,
Chaotic and Fractal Dynamics
,
Wiley
,
New York
.
15.
Dowell
,
E. H.
, 1982, “
Flutter of a Buckled Plate as an Example of Chaotic Motion of a Deterministic Autonomous System
,”
J. Sound Vib.
,
85
(
3
), pp.
333
344
.
16.
Pezeshki
,
C.
, and
Dowell
,
E. H.
, 1989, “
Generation and Analysis of Lyapunov Exponents for the Buckeled Beam
,”
Int. J. Non-Linear Mech.
,
24
(
2
), pp.
79
97
.
17.
Sipcic
,
S. R.
, 1990, “
Chaotic Response of Fluttering Panel-The Influence of Maneuvering
,”
Int. J. Non-Linear Dyn. Chaos Eng. Syst.
,
1
, pp.
243
264
.
18.
Sipcic
,
S. R.
, and
Morino
,
L.
, 1991, “
Dynamic Behavior of the Fluttering Two-Dimensional Panels on An Airplane in Pull-Up Maneuver
,”
AIAA J.
,
29
(
8
), pp.
1304
1312
.
19.
Yamaguchi
,
T.
, and
Nagai
,
K.
, 1997, “
Chaotic Vibrations of a Cylindrical Shell-Panel with an In-Plane Elastic-Support at Boundary
,”
Int. J. Non-Linear Dyn. Chaos Eng. Syst.
,
13
, pp.
259
277
.
20.
Kuo
,
Ch.
,
Morino
,
L.
, and
Dugundji
,
J.
, 1972, “
Perturbation and Harmonic Balance Methods for Non-linear Panel Flutter Problem
,”
AIAA J.
,
10
(
11
), pp.
1479
1484
.
21.
Chen
,
Y.
, and
Leung
,
A. Y. T.
, 1998,
Bifurcation and Chaos in Engineering
,
Springer
,
London
.
22.
Hodges
,
D. H.
, 1977, “
A Simplified Algorithm for Determining the Stability of Linear System
,”
AIAA J.
,
15
(
2
), pp.
424
425
.
23.
Bolotin
,
V. V.
,
Grishko
,
A. A.
,
Kounadis
,
A. N.
, and
Gantes
,
C. J.
, 1998, “
Non-Linear Panel Flutter in Remote Post-Critical Domains
,”
Int. J. Non-Linear Mech.
,
33
(
5
), pp.
753
764
.
24.
Bolotin
,
V. V.
,
Petrovsky
,
A. V.
, and
Grishko
,
A. A.
, 1996, “
Secondary Bifurcation and Global Instability of an Aeroelastic Non-Linear System in the Divergence Domain
,”
J. Sound Vib.
,
191
(
3
), pp.
431
451
.
25.
Mei
,
C.
,
Abdel-Motagaly
,
K.
, and
Chen
,
R.
, 1999, “
Review of Non-linear Panel Flutter at Supersonic and Hypersonic Speed
,”
CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics, NASA CP-1999-209136/PT 1
,
W.
Whitlow
, Jr.
, and
E. N.
Todd
, eds., pp.
171
188
.
26.
Bismarck-Nasr
,
M. N.
, 1999,
Structural Dynamics in Aeronautical Engineering
,
1st ed.
,
J. S.
Przemieniechi
, ed.,
AIAA Education Series, AIAA
,
Reston, VA
, Chap. 9, pp.
229
289
.
27.
Mei
,
C.
, 1977, “
Finite Element Approach of Non-linear Panel Flutter
,”
AIAA J.
,
15
(
6
), pp.
1107
1110
.
28.
Dowell
,
E. H.
, and
Ilgamov
,
M. A.
, 1988,
Studies in Non-linear Aeroelasticity
,
1st ed.
,
Springer-Verlag
,
New York
, (Chap. 2, pp.
29
63
; Chap. 6, pp. 206–277).
29.
Dowell
,
E. H.
, and
Voss
,
H. M.
, 1965, “
Theoretical and Experimental Panel Flutter Studies in the Mach Number Range 1.0 to 5.0
,”
AIAA J.
,
3
(
12
), pp.
2292
2304
.
30.
Kim
,
D. H.
, and
Lee
,
I.
, 2000, “
Transonic and Low-Supersonic Aeroelastic Analysis of Two Degree of Freedom Airfoil with Freeplay Non-linearity
,”
J. Sound Vib.
,
234
(
5
), pp.
859
880
.
31.
Fazelzadeh
,
S. A.
, 2004, “
Chaotic Analysis of Non-linear Curved-Panel Flutter Under Supersonic Flow
,”
Proceedings of the 7th and International Symposium Transport Noise and Vibration
, Petersburg, Russia.
32.
Lee
,
B. H. K.
,
Price
,
S. J.
, and
Wong
,
Y. S.
, 1999, “
Non-Linear Aeroelastic Analysis of Airfoils: Bifurcation and Chaos
,”
Prog. Aerosp. Sci.
,
35
(
3
), pp.
205
334
.
33.
Breitbach
,
E. J.
, 1978, “
Effects of Structural Non-Linearities on Aircraft Vibration and Flutter
,” TR-665, AGARD.
34.
Beldica
,
C. E.
,
Hilton
,
H. H.
, and
Kubair
,
D.
, 2001, “
Viscoelastic Panel Flutter–Stability, Probabilities of Failure and Survival Times
,”
Proceedings of the 42nd and AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Seattle, WA, pp.
3423
3433
.
35.
Dorsey
,
J. T.
,
Poteet
,
C. C.
, and
Chen
,
R. R.
, 2002, “
Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview
,”
Proceedings of the 40th Aerospace Science Meeting, AIAA 2002-0502
, Reno, NV.
36.
Librescu
,
L.
,
Marzocca
,
P.
, and
Silva
,
W. A.
, 2004, “
Linear/Non-linear Supersonic Panel Flutter in a High-Temperature Field
,”
J. Aircr.
,
41
(
4
), pp.
918
924
.
37.
Gee
,
D. J.
, and
Sipcic
,
S. R.
, 1999, “
Coupled Thermal Model for Non-linear Panel Flutter
,”
AIAA J.
,
37
(
5
), pp.
624
649
.
38.
Fung
,
Y. C.
, 1954, “
The Static Stability of a Two Dimensional Curved Panel in a Supersonic Flow with an Application to Panel Flutter
,”
J. Aeronaut. Sci.
,
21
, pp.
556
565
.
39.
Houbolt
,
J. C.
, 1965, “
A Study of Several Aerothermoelastic Problems of Aircraft Structures in High-Speed Flight
,”
Mitteilungen Aus Dem Institute fur Flugzeugstatik und Leichtbau
,
5
, Verlag Leeman, Zurich.
40.
Schaeffer
,
H. G.
, and
Heard
,
W. L.
, Jr.
, 1965, “
Flutter of a Flat Panel Subjected to a Non-linear Temperature Distribution
,”
AIAA J.
,
8
, pp.
1918
1923
.
41.
Ventres
,
C. S.
, and
Dowell
,
E. H.
, 1970, “
Comparison of Theory and Experiment for Non-linear Flutter of Loaded Plates
,”
AIAA J.
,
8
, pp.
2022
2030
.
42.
Yang
,
T. Y
, and
Han
,
A. D.
, 1976, “
Flutter of Thermally Buckled Finite Element Panels
,”
AIAA J.
,
14
, pp.
975
977
.
43.
Xue
,
D. Y.
, and
Mei
,
C.
, 1993, “
Finite Element Non-linear Panel Flutter with Arbitrary Temperatures in Supersonic Flow
,”
AIAA J.
,
31
(
1
), pp.
154
162
.
44.
Zhou
,
R. C.
,
Xue
,
D. Y.
, and
Mei
,
C.
, 1994, “
Finite Element Time Domain Modal Formulation for Non-linear Flutter of Composite Panels
,”
AIAA J.
,
32
(
10
), pp.
2044
2052
.
45.
Pourtakdoust
,
S. H.
, and
Fazelzadeh
,
S. A.
, 2005, “
Non-linear Aerothermoelastic Behavior of Skin Panel with Wall Shear Stress Effect
,”
J. Therm. Stresses
,
28
, pp.
147
169
.
46.
Bein
,
T.
,
Friedmann
,
P. P.
,
Zhong
,
X.
, and
Nydick
,
I.
, 1993, “
Hypersonic Flutter of a Curved Shallow Panel with Aerodynamic Heating
,” AIAA Paper No. 93-1318.
47.
Pourtakdoust
,
S. H.
, and
Fazelzadeh
,
S. A.
, 2003, “
Chaotic Analysis of Non-Linear Viscoelastic Panel Flutter in Supersonic Flow
,”
Int. J. Non-Linear Dyn. Chaos Eng. Syst.
,
32
(
4
), pp.
387
404
.
48.
Morino
,
L.
, 1969, “
A Perturbation Method for Treating Non-linear Panel Flutter Problems
,”
AIAA J.
,
7
(
3
), pp.
405
411
.
49.
Ariaratnam
,
S. T.
, and
Abdelrahman
,
N. M.
, 2001, “
Almost-Sure Stochastic Stability of Viscoelastic Plates in Supersonic Flow
,”
AIAA J.
,
39
(
3
), pp.
465
472
.
50.
Bismarck-Nasr
,
M. N.
, and
Bones
,
C. A.
, 2000, “
Damping Effects in Non-linear Panel Flutter
,”
AIAA J.
,
38
(
4
), pp.
711
713
.
51.
Drozdov
,
A.
, 1998,
Viscoelastic Structures: Mechanics of Growth and Aging
,
Academic Press
,
New York
.
52.
Epureanu
,
B. I.
,
Yin
,
S. H.
, and
Dowell
,
E. H.
, 2005, “
Enhanced Non-linear Dynamics for Accurate Identification of Stiffness Loss in a Thermo-Shielding Panel
,”
Non-Linear Dyn.
,
39
, p.
197
.
53.
Yin
,
S. H.
, and
Epureanu
,
B. I.
, 2005, “
Enhanced Non-linear Dynamics and Monitoring Bifurcation Morphing for the Identification of Parameter Variations
,”
J. Fluids Struct.
,
21
, p.
543
.
54.
Epureanu
,
B. I.
,
Tang
,
L. S.
, and
Paidoussis
,
M. P.
, 2004, “
Coherent Structures and their Influence on the Dynamics of Aeroelastic Panels
,”
Int. J. Non-Linear Mech.
,
39
(
6
), pp.
977
991
.
55.
Amabili
,
M.
, and
Pellicano
,
F.
, 2001, “
Non-Linear Supersonic Flutter of Circular Cylindrical Shells
,”
AIAA J.
,
39
(
4
), pp.
564
573
.
56.
Kubenko
,
V. D.
, and
Koval’chuk
,
P. S.
, 2004, “
Influence of Initial Geometric Imperfections on the Vibration and Dynamic Stability of Elastic Shells
,”
Int. Appl. Mech.
,
40
(
8
), pp.
847
877
.
57.
Walter
,
J. H.
,
Gerald
,
W. B.
, and
Ronald
,
O. S.
, 1971, “
The Influence of a High Velocity Fluid Environment on the Static and Dynamic Stability of Thin Cylindrical Shell Structures
,”
Proccedings of the International Association for Shell Structures, Pacific Symposium on Hydromechanically Loaded Shells: Part I
, Honolulu, HI.
58.
Nowacki
,
W.
, 1986,
Thermo-Elasticity
,
Pergamon Press
,
New York
.
59.
Bolotin
,
V. V.
,
Grishko
,
A. A.
, and
Panov
,
M. Yu.
, 2002, “
Effect of Damping on the Postcritical Behaviour of Autonomous Non-Conservative Systems
,”
Int. J. Non-Linear Mech.
,
37
(
7
), pp.
1163
1179
.
60.
Ellen
,
C. H.
, 1968, “
Influence of Structural Damping on Panel Flutter
,”
AIAA J.
,
6
, pp.
2169
2174
.
61.
Lottati
,
I.
, 1985, “
The Role of Damping on Supersonic Panel Flutter
,”
AIAA J.
,
23
, pp.
1640
1642
.
62.
Hilton
,
H. H.
, 2001, “
Implications and Constraints of Time-Independent Poisson Ratios in Linear Isotropic and Anisotropic Viscoelasticity
,”
J. Elast.
,
63
(
3
), pp.
221
251
.
63.
Resende
,
H. B.
, 1993, “
Hypersonic Panel Flutter in a Rarefied Atmosphere
,” NASA Contractor Report No. 4514, Grant No. NGL-05-020-243.
64.
Fung
,
Y. C.
, 1958, “
Two-Dimensional Panel Flutter
,”
J. Aerosp. Sci.
,
25
(
3
), pp.
147
159
.
65.
Gray
,
C. E.
, Jr.
, and
Mei
,
C.
, 1993, “
Large-Amplitude Finite Element Flutter Analysis of Composite Panel in Hypersonic Flow
,”
AIAA J.
,
31
(
6
), pp.
1090
1099
.
66.
Dowell
,
E. H.
, 1969, “
Non-linear Flutter of Curved Plates, Part 1
,”
AIAA J.
,
7
(
3
), pp.
424
431
.
67.
Dowell
,
E. H.
, 1970, “
Non-Linear Flutter of Curved Plates, Part 2
,”
AIAA J.
,
8
(
2
), pp.
259
261
.
68.
Eastep
,
F. E.
, and
McIntosh
,
S. C.
, Jr.
, 1971, “
Analysis of Non-linear Panel Flutter and Response under Random Excitation or Non-linear Aerodynamic Loading
,”
AIAA J.
,
9
(
3
), pp.
411
418
.
69.
Dowell
,
E. H.
, 1966, “
The Flutter of Infinitely Long Plates and Shells, Part 1: Plate
,”
AIAA J.
,
4
(
8
), pp.
1370
1377
.
70.
Dowell
,
E. H.
, 1966, “
The Flutter of Infinitely Long Plates and Shells, Part 2: Cylindrical Shell
,”
AIAA J.
,
4
(
9
), pp.
1510
1518
.
71.
Gee
,
D. J.
, 2000, “
Numerical Continuation Applied to Panel Flutter
,”
Int. J. Non-Linear Dyn. Chaos Eng. Syst.
,
22
, pp.
271
280
.
72.
Librescu
,
L.
,
Chiocchia
,
C.
, and
Marzocca
,
P.
, 2003, “
Implications of Cubic Physical/Aerodynamic Non-Linearities on the Character of the Flutter Instability Boundary
,”
Int. J. Non-Linear Mech.
,
38
, pp.
173
199
.
73.
Ko
,
W. L.
, 1996, “
Analysis of Hypersonic Aircraft Hat-Stiffened Panels with Varying Face Sheet Geometry and Fiber Orientation
,” NASA Technical Memorandum 4770.
You do not currently have access to this content.