This paper proposes a substructural damage identification approach without the information of responses and forces at the interface degrees-of-freedom. It is based on the response reconstruction technique using the unit impulse response function in the wavelet domain. The finite element model of the target substructure and acceleration measurement data from the damaged substructure are required in the identification. A dynamic response sensitivity-based method is used for the substructural finite element model updating, and local damage is identified as a change in the elemental stiffness factors. The adaptive Tikhonov regularization technique is adopted to improve the identification results with the measurement noise effect. Numerical studies on a three-dimensional box-section girder are conducted to validate the proposed method of substructural damage identification. The simulated damage can be identified effectively even with 10% noise in the measurements and a 5% coefficient of variation in the elastic modulus of material of the structure.

References

References
1.
Koh
,
C. G.
,
See
,
L. M.
, and
Balendra
,
T.
, 1991, “
Estimation of Structural Parameters in Time Domain: A Substructure Approach
,”
Earthquake Eng. Struct. Dyn.
,
20
(
8
), pp.
787
801
.
2.
Yun
,
C. B.
, and
Lee
,
H. J.
, 1997, “
Substructural Identification for Damage Estimation of Structures
,”
Struct. Safety
,
120
(
7
), pp.
1961
1976
.
3.
Yun
,
C. B.
, and
Bahng
,
E. Y.
, 2000, “
Substructural Identification Using Neural Networks
,”
Comput. Struct.
,
77
(
1
), pp.
41
52
.
4.
Koh
,
C. G.
,
Hong
,
B.
, and
Liaw
,
C. Y.
, 2003, “
Substructural and Progressive Structural Identification Methods
,”
Eng. Struct.
,
25
(
12
), pp.
1551
1563
.
5.
Tee
,
K. F.
,
Koh
,
C. G.
, and
Quek
,
S. T.
, 2005, “
Substructural First- and Second-Order Model Identification for Structural Damage Assessment
,”
Earthquake Eng. Struct. Dyn.
,
34
(
15
), pp.
1755
1775
.
6.
Tee
,
K. F.
,
Koh
,
C. G.
, and
Quek
,
S. T.
, 2009, “
Numerical and Experimental Studies of a Substructural Identification Strategy
,”
Struct. Health Monit.
,
8
(
5
), pp.
397
410
.
7.
Koh
,
C. G.
, and
Shankar
,
K.
, 2003, “
Substructural Identification Method Without Interface Measurement
,”
J. Eng. Mech.
,
129
(
7
), pp.
769
776
.
8.
Law
,
S. S.
,
Zhang
,
K.
, and
Duan
,
Z. D.
, 2010, “
Structural Damage Detection From Coupling Forces Between Substructures Under Support Excitation
,”
Eng. Struct.
,
32
(
8
), pp.
2221
-
2228
.
9.
Huang
,
H. W.
, and
Yang
,
J. N.
, 2008, “
Damage Identification of Substructure for Local Health Monitoring
,”
Smart Struct. Syst.
,
4
(
6
), pp.
795
807
.
10.
Newland
,
D. E.
, 1993,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
,
3rd ed.
,
Dover
,
New York.
11.
Li
,
J.
, and
Law
,
S. S.
, 2011, “
Substructural Response Reconstruction in Wavelet Domain
,”
ASME J. Appl. Mech.
,
78(4)
,
041010
.
12.
Law
,
S. S.
,
Li
,
J.
, and
Ding
,
Y.
, 2011, “
Structural Response Reconstruction With Transmissibility Concept in Frequency Domain
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
952
968
.
13.
Alvin
,
K. F.
,
Robertson
,
A. N.
,
Reich
,
G. W.
, and
Park
,
K. C.
, 2003, “
Structural System Identification: From Reality to Models
,”
Comput. Struct.
,
81
(
12
), pp.
1149
1176
.
14.
Newmark
,
N. W.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
15.
Juang
,
J. N.
, and
Pappa
,
R. S.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
620
627
.
16.
Robertson
,
A. N.
,
Park
,
K. C.
, and
Alvin
,
K. F.
, 1998, “
Extraction of Impulse Response Data via Wavelet Transform for Structural System Identification
,”
ASME J. Vibr. Acoust.
,
120
(
1
), pp.
252
260
.
17.
Law
,
S. S.
, and
Li
,
X. Y.
, 2007, “
Wavelet-based Sensitivity Analysis of the Impulse Response Function for Damage Detection
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
375
377
.
18.
Daubechies
,
I.
, 1992,
Ten Lectures on Wavelets
,
SIAM
,
Philadelphia, PA
.
19.
Li
,
X. Y.
, and
Law
,
S. S.
, 2008, “
Structural Damage Detection With Statistical Analysis From Support Excitation
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1793
-
1808
.
20.
Penrose
,
R.
, 1955, “
A Generalized Inverse for Matrices
,”
Math. Proc. Cambridge Philos. Soc.
,
51
(
3
), pp.
406
413
.
21.
Lu
,
Z. R.
, and
Law
,
S. S.
, 2007, “
Features of Dynamic Response Sensitivity and its Application in Damage Detection
,”
J. Sound Vib.
,
303
(
1–2
), pp.
305
329
.
22.
Zivanovic
,
S.
,
Pavic
,
A.
, and
Reynolds
,
P.
, 2007, “
Finite Element Modeling and Updating of a Lively Footbridge: The Complete Process
,”
J. Sound Vib.
,
301
(
1–2
), pp.
126
145
.
23.
Morton
,
K. W.
, and
Mayers
,
D. F.
, 2005,
Numerical Solution of Partial Differential Equations, An Introduction
,
Cambridge University Press
,
Cambridge, UK.
24.
Li
,
X. Y.
, and
Law
,
S. S.
, 2010, “
Adaptive Tikhonov Regularization for Damage Detection Based on Nonlinear Model Updating
,”
Mech. Syst. Signal Process.
,
24
(
6
), pp.
1646
1664
.
25.
Kwon
,
Y. W.
, and
Bang
,
H. C.
, 2000,
The Finite Element Method Using MATLAB
,
2nd ed.
,
CRC Press LLC
,
London, UK
.
26.
PEER Strong Motion Database, Regents of the University of California, http://peer.berkeley.edu/smcat/index.htmlhttp://peer.berkeley.edu/smcat/index.html
27.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
, 1995, “
Model Reduction Using Dynamic and Iterated IRS Technique
,”
J. Sound Vib.
,
186
(
2
), pp.
311
323
.
28.
Furukawa
,
A.
,
Otsuka
,
H.
, and
Kiyono
,
J.
, 2006, “
Structural Damage Detection Method Using Uncertain Frequency Response Functions
,”
Comput. Aided Civ. Infrastruct. Eng.
,
21
(
4
), pp.
292
305
.
You do not currently have access to this content.