In filled elastomers, the mechanical behavior of the material surrounding the fillers -termed interphasial material-can be significantly different (softer or stiffer) from the bulk behavior of the elastomeric matrix. In this paper, motivated by recent experiments, we study the effect that such interphases can have on the mechanical response and stability of fiber-reinforced elastomers at large deformations. We work out in particular analytical solutions for the overall response and onset of microscopic and macroscopic instabilities in axially stretched 2D fiber-reinforced nonlinear elastic solids. These solutions generalize the classical results of Rosen (1965, “Mechanics of Composite Strengthening,” Fiber Composite Materials, American Society for Metals, Materials Park, OH, pp. 37–75), and Triantafyllidis and Maker (1985, “On the Comparison between Microscopic and Macroscopic Instability Mechanisms in a Class of Fiber-Reinforced Composites,” J. Appl. Mech., 52, pp. 794–800), for materials without interphases. It is found that while the presence of interphases does not significantly affect the overall axial response of fiber-reinforced materials, it can have a drastic effect on their stability.

References

References
1.
Ramier
,
J.
,
Chazeau
,
L.
,
Gauthier
,
C.
,
Guy
,
L.
, and
Bouchereau
,
M. N.
, 2007, “
Influence of Silica and its Different Surface Treatments on the Vulcanization Process of Silica Filled SBR
,”
Rubber Chem. Technol.
,
80
, pp.
183
193
.
2.
Qu
,
M.
,
Deng
,
F.
,
Kalkhoran
,
S. M.
,
Gouldstone
,
A.
,
Robisson
,
A.
, and
Van Vliet
,
K. J.
, 2011, “
Nanoscale Visualization and Multiscale Mechanical Implications of Bound Rubber Interphases in Rubber-Carbon Black Nanocomposites
,”
Soft Matter
,
7
, pp.
1066
1077
.
3.
Ramier
,
J.
, 2004, “
Comportement Mécanique D’élastomérs Chargés, Influence de L’adhésion Charge-Polymére, Influence de la Morphologie
” Ph.D. dissertation, Institut National des Science Appliquées de Lyon, France.
4.
Reis
,
P.
, 2011, “
Buckling of a Thin Nitinol Rod Embbeded in a Soft Elastic Matrix under Uniaxial Compression
,”
private communication
.
5.
Dannenberg
,
E. M.
, 1986, “
Bound Rubber and Carbon Black Reinforcement
,”
Rubber Chem. Technol.
,
59
, pp.
512
525
.
6.
Meissner
,
B.
, 1993, “
Bound Rubber Theory and Experiment
,”
J. Appl. Polym. Sci.
,
50
, pp.
285
292
.
7.
Leblanc
,
J. L.
, 2002, “
Rubber-Filler Interactions and Rheological Properties in Filled Compounds
,”
Prog. Polym. Sci.
,
27
, pp.
627
687
.
8.
Walpole
,
L. J.
, 1978, “
A Coated Inclusion in an Elastic Medium
,”
Math. Proc. Cambridge Philos. Soc.
,
83
, pp.
495
506
.
9.
Hashin
,
Z.
, 1991, “
The Spherical Inclusion With Imperfect Interface
,”
J. Appl. Mech.
,
58
, pp.
444
449
.
10.
Rosen
,
B. W.
, 1965, “
Mechanics of Composite Strengthening
,”
Fiber Composite Materials
,
American Society for Metals, Materials Park
,
OH
, pp.
37
75
.
11.
Triantafyllidis
,
N.
, and
Maker
,
B. N.
, 1985, “
On the Comparison Between Microscopic and Macroscopic Instability Mechanisms in a Class of Fiber-Reinforced Composites
,”
J. Appl. Mech.
,
52
, pp.
794
800
.
12.
Lopez-Pamies
,
O.
, and
Idiart
,
M. I.
, 2010, “
Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory
,”
J. Eng. Math.
,
68
, pp.
57
83
.
13.
Agoras
,
M.
,
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2009, “
Onset of Macroscopic Instabilities in Fiber-Reinforced Nonlinearly Elastic Materials
,”
J. Mech. Phys. Solids
,
57
, pp.
1828
1850
.
14.
Hill
,
R.
, 1972, “
On Constitutive Macrovariables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. Lond. A
,
326
, pp.
131
147
.
15.
Hill
,
R.
, and
Rice
,
J. R.
, 1973, “
Elastic Potentials and the Structure of Inelastic Constitutive Laws
,”
SIAM J. Appl. Math.
,
25
, pp.
448
461
.
16.
Braides
,
A.
, 1985, “
Homogenization of Some Almost Periodic Coercive Functionals
,”
Rend. Acc. Naz. XL.
,
9
, pp.
313
322
.
17.
Müller
,
S.
, 1987, “
Homogenization of Nonconvex Integral Functionals and Cellular Elastic Materials
,”
Arch. Rat. Mech. Anal.
,
99
, pp.
189
212
.
18.
Geymonat
,
G.
,
Müller
,
S.
, and
Triantafyllidis
,
N.
, 1993, “
Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,”
Arch. Rat. Mech. Anal
.
122
, pp.
231
290
.
19.
Nestorvic
,
M. D.
, and
Triantafyllidis
,
N.
, 2004, “
Onset of Failure in Finitely Strained Layered Composites Subjected to Combined Normal and Shear Strain
,”
J. Mech. Phys. Solids
,
52
, pp.
941
974
.
20.
Milton
,
G. W.
, 2002,
The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics
,
Cambridge University Press
,
Cambridge
, Vol.
6
.
21.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2009, “
Microstructure Evolution in Hyperelastic Laminates and Implications for Overall Behavior and Macroscopic Stability
,”
Mech. Mater.
,
41
, pp.
364
374
.
22.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Dover
,
New York
.
23.
Ince
,
E. L.
, 1956,
Ordinary Differential Equations
,
Dover
,
New York
.
24.
Lopez-Pamies
,
O.
,
Idiart
,
M.
, and
Li
,
Z.
, 2011, “
On Microstructure Evolution in Fiber-Reinforced Elastomers and Implications for their Mechanical Response and Stability
,”
J. Eng. Mater. Technol.
,
133
, p.
011007
.
25.
Hill
,
R.
, 1979, “
On the Theory of Plane Strain in Finitely Deformed Compressible Materials
,”
Math. Proc. Cambridge Philos. Soc.
,
86
, pp.
161
178
.
26.
Jelf
,
P. M.
, and
Fleck
,
N.
, 1992, “
Compression Failure Mechanisms in Unidirectional Composites
,”
J. Compos. Mater.
,
26
, pp.
2706
2726
.
27.
Fleck
,
N.
, 1997, “
Compressive Failure of Fiber Composites
,”
Adv. Appl. Mech.
,
33
, pp.
43
117
.
You do not currently have access to this content.