A linearized model is developed for lithium ion batteries, relying on simplified characterizations of lithium transport in the electrolyte and through the interface between the electrolyte and the storage particles of the electrodes. The model is valid as a good approximation to the behavior of the battery when it operates near equilibrium, and can be used for both discharge and charging of the battery. The rate of extraction of lithium from and to the electrode storage particles can be estimated from the results of the model, information that can be used in turn to estimate the shrinkage and swelling stresses that develop in the particles. Given specified rates of extraction for spherical particles, maps of the resulting shrinkage and swelling stresses can be developed connecting their values to battery parameters such as particles size, diffusion coefficient, lithium partial molar volume, and particle elastic properties. Since a constant rate of extraction can only be achieved for a limited period of time until the concentration of lithium at the particle perimeter constrains the lithium mass transport, plots of the average state of charge in the particle versus time are also produced.

References

References
1.
Besenhard
,
J. O.
, 1998,
Handbook of Battery Materials
,
Wiley-VCH
,
New York
.
2.
Nazri
,
G.-A.
, and
Pistoia
,
G.
, Eds.,
Lithium Batteries: Science and Technology
,
Kluwer, Dordrecht
,
Netherlands
.
3.
Christensen
,
J.
, and
Newman
,
J.
, 2006, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
, pp.
A1019
A1030
.
4.
Vetter
,
J.
,
Novak
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Moeller
,
K.-C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
, 2005, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
, pp.
269
281
.
5.
Moon
,
H. S.
,
Lee
,
W.
,
Reucroft
,
P. J.
, and
Park
,
J.-W.
, 2003, “
Effect of Film Stress on Electrochemical Properties of Lithium Manganese Oxide Thin Films
,”
J. Power Sources
,
119–121
, pp.
710
712
.
6.
Wang
,
D.
,
Wu
,
X.
,
Wang
,
Z.
, and
Chen
,
L.
, 2005, “
Cracking Causing Cyclic Instability of LiFePO4 Cathode Material
,”
J. Power Sources
,
140
, pp.
125
128
.
7.
Christensen
,
J.
, and
Newman
,
J.
, 2006, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electrochem.
,
10
, pp.
293
319
.
8.
Taberna
,
L.
,
Mitra
,
S.
,
Poizot
,
P.
,
Simon
,
P.
, and
Tarascon
,
J.-M.
, 2006, “
High Rate Capabilities of Fe3O4-Based Cu Nano-architectured Electrodes for Lithium-Ion Battery Applications
,”
Nat. Mater.
,
5
, pp.
567
573
.
9.
Tarascon
,
J.-M.
, and
Armand
,
M.
, 2001, “
Issues and Challenges Facing Rechargeable Batteries
,”
Nature
,
414
, pp.
359
367
.
10.
Sethuraman
,
V. A.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
, 2010, “
In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
,”
J. Electrochem. Soc.
,
157
, pp.
A1253
A1261
.
11.
Broussely
,
M.
, 2002, “
Ageing Mechanisms and Calendar-Life Predictions
,” in
Advances in Lithium-Ion Batteries
,
W.
van Schalkwijk
and
B.
Scrosati
, Eds.,
Kluwer Academic/Plenum, Dordrecht
,
Netherlands
,, pp.
393
432
.
12.
Bloom
,
I.
,
Cole
,
B. W.
,
Sohn
,
J. J.
,
Jones
,
S. A.
,
Polzin
,
E. G.
,
Battaglia
,
V. S.
,
Henriksen
,
G. L.
,
Motloch
,
C. G.
,
Richardson
,
R.
,
Unkelhaeuser
,
T.
,
Ingersoll
,
D.
, and
Case
,
H. L.
, 2001, “
An Accelerated Calendar and Cycle Life Study of Li-Ion Cells
,”
J. Power Sources
,
101
, pp.
238
247
.
13.
Wright
,
R. B.
,
Motloch
,
C. G.
,
Belt
,
J. R.
,
Christophersen
,
J. P.
,
Ho
,
C. D.
,
Richardson
,
R. A.
,
Bloom
,
I.
,
Jones
,
S. A.
,
Battaglia
,
V. S.
,
Henriksen
,
G. L.
,
Unkelhaeuser
,
T.
,
Ingersoll
,
D.
,
Case
,
H. L.
,
Rogers
,
S. A.
, and
Sutula
,
R. A.
, 2002, “
Calendar- and Cycle-Life Studies of Advanced Technology Development Program Generation I Lithium-Ion Batteries
,”
J. Power Sources
,
110
, pp.
445
470
.
14.
Abraham
,
D. P.
,
Liu
,
J.
,
Chen
,
C. H.
,
Hyung
,
Y. E.
,
Stoll
,
M.
,
Elsen
,
N.
,
MacLaren
,
S.
,
Twesten
,
R.
,
Haasch
,
R.
,
Sammann
,
E.
,
Petrov
,
I.
,
Amine
,
K.
, and
Henriksen
,
G.
, 2003, “
Diagnosis of Power Fade Mechanisms in High-Power Lithium-Ion Cells
,”
J. Power Sources
,
119–121
, pp.
511
516
.
15.
Bloom
,
I.
,
Jones
,
S. A.
,
Battaglia
,
V. S.
,
Henriksen
,
G. L.
,
Christophersen
,
J. P.
,
Wright
,
R. B.
,
Ho
,
C. D.
,
Belt
,
J. R.
, and
Motloch
,
C. G.
, 2003, “
Effect of Cathode Composition on Capacity Fade, Impedance Rise and Power Fade in High-Power, Lithium-Ion Cells
,”
J. Power Sources
,
124
, pp.
538
550
.
16.
Bloom
,
I.
,
Potter
,
B. G.
,
Johnson
,
C. S.
,
Gering
,
K. L.
, and
Christophersen
,
J. P.
, 2006, “
Effect of Cathode Composition on Impedance Rise in High-Power Lithium-Ion Cells: Long-Term Aging Results
,”
J. Power Sources
,
155
, pp.
415
419
.
17.
Peabody
,
C.
, and
Arnold
,
C. B.
, 2011, “
The Role of Mechanically Induced Separator Creep in Lithium-Ion Battery Capacity Fade
,”
J. Power Sources
,
196
, pp.
8147
8153
.
18.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
, pp.
1526
1533
.
19.
Thomas
,
K. E.
,
Darling
,
R. M.
, and
Newman
,
J.
, 2002, “
Mathematical Modeling of Lithium Batteries
,” in
Advances in Lithium-Ion Batteries
,
W.
van Schalkwijk
and
B.
Scrosati
, eds.,
Kluwer Academic/Plenum, Dordrecht
,
Netherlands
, pp.
345
392
.
20.
Darling
,
R.
, and
Newman
,
J.
, 1997, “
On the Short-Time Behavior of Porous Intercalation Electrodes
,”
J. Electrochem. Soc.
,
144
, pp.
3057
3063
.
21.
Ning
,
G.
, and
Popov
,
B. N.
, 2004, “
Cycle Life Modeling of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
151
, pp.
A1584
A1591
.
22.
Devan
,
S.
,
Subramanian
,
V. R.
, and
White
,
R. E.
, 2005, “
Transient Analysis of a Porous Electrode
,”
J. Electrochem. Soc.
,
152
, pp.
A947
A955
.
23.
Ning
,
G.
,
White
,
R. E.
, and
Popov
,
B. N.
, 2006, “
A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries
,”
Electrochim. Acta
,
51
, pp.
2012
2022
.
24.
Stephenson
,
D. E.
,
Hartman
,
E. M.
,
Harb
,
J. N.
, and
Wheeler
,
D. R.
, 2007, “
Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
154
, pp.
A1146
A1155
.
25.
Renganathan
,
S.
,
Sikha
,
G.
,
Santhanagopalan
,
S.
, and
White
,
R. E.
, 2010, “
Theoretical Analysis of Stresses in a Lithium Ion Cell
,”
J. Electrochem. Soc.
,
157
, pp.
A155
A163
.
26.
Christensen
,
J.
, 2010, “
Modeling Diffusion Induced Stress in Li-Ion Cells With Porous Electrodes
,”
J. Electrochem. Soc.
,
157
, pp.
A366
A380
.
27.
Garcia
,
R. E.
,
Chiang
,
Y.-M.
,
Carter
,
W. C.
,
Limthongkul
,
P.
, and
Bishop
,
C. M.
, 2005, “
Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
152
, pp.
A255
A263
.
28.
Garcia
,
R. E.
, and
Chiang
,
Y.-M.
, 2007, “
Spatially Resolved Modeling of Microstructurally Complex Battery Architectures
,”
J. Electrochem. Soc.
,
154
, pp.
A856
A864
.
29.
Yi
,
Y.-B.
,
Wang
,
C.-W.
, and
Sastry
,
A. M.
, 2006, “
Compression of Packed Particulate Systems: Simulations and Experiments in Graphitic Li-Ion Anodes
,”
ASME J. Eng. Mater. Technol.
,
128
, pp.
73
80
.
30.
Zhang
,
X.
,
Shyy
,
W.
, and
Sastry
,
A. M.
, 2007, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
, pp.
A910
A916
.
31.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
, 2011, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
, pp.
A201
A206
.
32.
Ploehn
,
H. J.
,
Ramadass
,
P.
, and
White
,
R. E.
, 2004, “
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
151
, pp.
A456
A462
.
33.
Chen
,
Y.
, and
Evans
,
J. W.
, 1994, “
Three-Dimensional Thermal Modeling of Lithium-Polymer Batteries Under Galvanostatic Discharge and Dynamic Power Profile
,”
J. Electrochem. Soc.
,
141
, pp.
2947
2955
.
34.
Newman
,
J.
, and
Tiedemann
,
W.
, 1995, “
Temperature Rise in Battery Module With Constant Heat Generation
,”
J. Electrochem. Soc.
,
142
, pp.
1054
1057
.
35.
Chen
,
Y.
, and
Evans
,
J. W.
, 1996, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
143
, pp.
2708
2712
.
36.
Pals
,
C. R.
, and
Newman
,
J.
, 1995, “
Thermal Modeling of Lithium/Polymer Battery, I Discharge Behavior of a Single Cell
,”
J. Electrochem. Soc.
,
142
, pp.
3274
3281
.
37.
Song
,
L.
, and
Evans
,
J. W.
, 2000, “
Electrochemical-Thermal Modeling of Lithium Polymer Batteries
,”
J. Electrochem. Soc.
,
147
, pp.
2086
2095
.
38.
Golmon
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
, 2009, “
Numerical Modeling of Electrochemical-Mechanical Interactions in Lithium Polymer Batteries
,”
Comput. Struct.
,
87
, pp.
1567
1579
.
39.
Bohn
,
E.
,
Eckl
,
T.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
, 2011, “
A Model for Lithium Diffusion and Stress Generation in a Storage Particle of an Intercalation Electrode
,” submitted.
40.
Verbrugge
,
M. W.
, and
Koch
,
B. J.
, 1996, “
Modeling Lithium Intercalation of Single-Fiber Carbon Microelectrodes
,”
J. Electrochem. Soc.
,
143
, pp.
600
608
.
41.
Aifantis
,
K. E.
, and
Dempsey
,
J. P.
, 2005, “
Stable Crack Growth in Nanostructured Li-Batteries
,”
J. Power Sources
,
143
, pp.
203
211
.
42.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
, 2010, “
Application of Hasselman’s Crack Propagation Model to Insertion Electrodes
,”
Electrochem. Solid State Lett.
,
13
, pp.
A128
A131
.
43.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
, 2010, “
Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
,”
J. Electrochem. Soc.
,
157
, pp.
A508
A516
.
44.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
, 2010, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
, p.
073517
.
45.
Yang
,
F.
, 2010, “
Insertion-Induced Breakage Materials
,”
J. Appl. Phys.
,
108
, p.
073536
.
46.
Woodford
,
W. H.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
, 2010,
“Electrochemical Shock’ of Intercalation Electrodes—A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
, pp.
A1052
A1059
.
47.
Bhandakkar
,
T. K.
, and
Gao
,
H.
, 2010, “
Cohesive Modeling of Crack Nucleation Under Diffusion Induced Stresses in a Thin Strip: Implications on the Critical Size for Flaw Tolerant Battery Electrodes
,”
Int. J. Solids Struct.
,
47
, pp.
1424
1434
.
48.
Bhandakkar
,
T. K.
, and
Gao
,
H.
, 2011, “
Cohesive Modeling of Crack Nucleation in a Cylindrical Electrode Under Axisymmetric Diffusion Induced Stresses
,”
Int. J. Solids Struct.
,
48
, pp.
2304
2309
.
49.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
, 2011, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half Cell
,”
J. Mech. Phys. Solids
,
59
, pp.
804
828
.
50.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
, 2011, “
Inelastic Hosts As Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
, p.
016110
.
51.
Botte
,
G. G.
, and
White
,
R. E.
, 2001, “
Modeling Lithium Intercalation in a Porous Carbon Electrode
,”
J. Electrochem. Soc.
,
148
, pp.
A54
A66
.
52.
Subramanian
,
V. R.
,
Boovaragavan
,
V.
,
Ramadesigan
,
V.
Chen
,
K.
, and
Braatz
,
R. D.
, 2009, “
Model Reformulation and Design of Lithium-Ion Batteries
,”
Design for Energy and the Environment
,
A. A.
Linniger
and
M. M.
El-Hawagi
, eds.,
Taylor and Francis
,
London
, pp.
987
1005
.
53.
Renganathan
,
S.
, and
White
,
R. E.
, 2011, “
Semianalytical Method of Solution for Solid Phase Diffusion in Lithium Ion Battery Electrodes: Variable Diffusion Coefficient
,”
J. Power Sources
,
196
, pp.
442
448
.
54.
Ramadesigan
,
V.
,
Boovaragavan
,
V.
,
Pirkle
,
J. C.
, Jr.
, and
Subramanian
,
V. R.
, 2010, “
Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models
,”
J. Electrochem. Soc.
,
157
, pp.
A854
A860
.
55.
Forman
,
J. C.
,
Bashash
,
S.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
, 2011, “
Reduction of the Electrochemistry-Based Li-Ion Battery Model Via Quasi-Linearization and Padé Approximation
,”
J. Electrochem. Soc.
,
158
, pp.
A93
A101
.
56.
Gallagher
,
K. G.
,
Nelson
,
P. A.
, and
Dees
,
D. W.
, 2011, “
Simplified Calculation of the Area Specific Impedance for Battery Design
,”
J. Power Sources
,
196
, pp.
2289
2297
.
57.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
, 2004,
Electrochemical Systems
,
3rd ed.
,
John Wiley
,
Hoboken, NJ
.
58.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A.
,
Schmutz
,
C.
, and
Tarascon
,
J. M.
, 1996, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
, pp.
1890
1903
.
59.
Darling
,
J.
, and
Newman
,
J.
, 1999, “
Dynamic Monte Carlo Simulations of Diffusion in LiyMn2O4
,”
J. Electrochem. Soc.
,
146
, pp.
3765
3772
.
60.
Cheng
,
Y.-T.
, and
Verbrugge
,
M.
, 2009, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
, pp.
453
460
.
61.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
,
New York
.
62.
Yang
,
F.
, 2005, “
Interaction Between Diffusion and Chemical Stresses
,”
Mater. Sci. Eng.
,
A-409
, pp.
153
159
.
You do not currently have access to this content.