The boundary integral equation method (BIEM) has been applied to the analysis of rupture propagation of nonplanar faults in an unbounded homogeneous elastic medium. Here, we propose an extended BIEM (XBIEM) that is applicable in an inhomogeneous bounded medium consisting of homogeneous sub-regions. In the formulation of the XBIEM, the interfaces of the sub-regions are regarded as extended boundaries upon which boundary integral equations are additionally derived. This has been originally known as a multiregion approach in the analysis of seismic wave propagation in the frequency domain and it is employed here for rupture dynamics interacting with medium interfaces in time domain. All of the boundary integral equations are fully coupled by imposing boundary conditions on the extended boundaries and then numerically solved after spatiotemporal discretization. This paper gives the explicit expressions of discretized stress kernels for anti-plane nonplanar problems and the numerical method for the implementation of the XBIEM, which are validated in two representative planar fault problems.

References

References
1.
Kostrov
,
B.
, 1966, “
Unsteady Propagation of Longitudinal Shear Cracks
,”
J. Appl. Math. Mech.
,
30
, pp.
1241
-
1248
.
2.
Madariaga
,
R.
, 1976, “
Dynamics of Expanding Circular Fault
,”
Bull. Seismol. Soc. Am.
,
66
, pp.
639
666
.
3.
Oglesby
,
D. D.
,
Archuleta
,
R. J.
, and
Nielsen
,
S. B.
, 1998, “
Earthquakes on Dipping Faults: the Effects of Broken Symmetry
,”
Science
,
280
, pp.
1055
1059
.
4.
Andrews
,
D. J.
, 1976, “
Rupture Velocity of Plane Strain Shear Crack
,”
J. Geophys. Res.
,
81
, pp.
5679
5687
.
5.
Cochard
,
A.
and
Madariaga
,
R.
, 1994, “
Dynamic Faulting Under Rate-Dependent Friction
,”
Pure Appl. Geophys.
,
142
, pp.
419
445
.
6.
Kame
,
N.
and
Yamashita
T.
, 1997, “
Dynamic Nucleation Process of Shallow Earthquake Faulting in a Fault Zone
,”
Geophys. J. Int.
,
128
, pp.
204
216
.
7.
Lapsta
,
N.
,
Rice
,
J. R.
,
Ben-Zion
,
Y.
, and
Zheng
,
G.
, 2000, “
Elastodynamic Analysis for Slow Tectonic Loading with Spontaneous Rupture Episodes on Faults with Rate- and State-dependent Friction
,”
J. Geophys. Res.
,
105
, pp.
23765
23790
.
8.
Tada
,
T.
and
Madariaga
,
R.
, 2001, “
Dynamic Modelling of the Flat 2-D Crack by a Semi-analytic BIEM Scheme
,”
Int. J. Numer. Mech. Eng.
,
50
, pp.
227
251
.
9.
Kame
,
N.
and
Uchida
,
K.
, 2008, “
Seismic Radiation from Dynamic Coalescence, and the Reconstruction of Dynamic Source Parameters on a Planar Fault
,”
Geophys. J. Int.
,
174
, pp.
696
706
.
10.
Tada
,
T.
and
Yamashita
T.
, 1997, “
Non-Hypersingular Boundary Integral Equations for Two-Dimensional Non-Planar Crack Analysis
,”
Geophys. J. Int.
,
130
, pp.
269
282
.
11.
Kame
,
N.
and
Yamashita
T.
, 1999, “
A New Light on Arresting Mechanism of Dynamic Earthquake Faulting
,”
Geophys. Res. Lett.
,
26
, pp.
1997
2000
.
12.
Aochi
,
H.
,
Fukuyama
,
E.
, and
Matsu’ura
,
M.
, 2000, “
Spontaneous Rupture Propagation on a Nonplanar Fault in 3-D Elastic Medium
,”
Pure Appl. Geophys.
,
157
, pp.
2003
2027
.
13.
Kame
,
N.
and
Yamashita
T.
, 2003, “
Dynamic Branching, Arresting of Rupture and the Seismic Wave Radiation in a Self-Chosen Crack Path Modelling
,”
Geophys. J. Int.
,
155
, pp.
1042
1050
.
14.
Kame
,
N.
,
Rice
,
J. R.
, and
Dmowska
,
R.
, 2003, “
Effects of Prestress State and Rupture Velocity on Dynamic Fault Branching
,”
J. Geophys. Res.
,
108
(B5), p.
2265
.
15.
Bhat
,
H.
,
Dmowska
,
R.
,
Rice
,
J. R.
, and
Kame
,
N.
, 2004, “
Dynamic Slip Transfer from the Denali to Totschunda Faults, Alaska: Testing Theory for Fault Branching
,”
Bull. Seismol. Soc. Am.
,
94
, pp.
202
213
.
16.
Ando
,
R.
,
Kame
,
N.
, and
Yamashita
,
T.
, 2007, “
An Efficient Boundary Integral Equation Method Applicable to the Analysis of Non-planar Fault Dynamics
,”
Earth Planets Space
,
59
, pp.
363
373
.
17.
Kame
,
N.
and
Yamashita
T.
, 1999, “
Simulation of the Spontaneous Growth of a Dynamic Crack without Constraints on the Crack Tip Path
,”
Geophys. J. Int.
,
139
, pp.
345
358
.
18.
Tada
,
T.
, 2009, “
Boundary Integral Equation Method for Earthquake Rupture Dynamics
,”
Fault-Zone Properties and Earthquake Rupture Dynamics
,
E.
Fukuyama
,. ed.,
Elsevier Academic
,
Burlington, MA
, pp.
217
267
.
19.
Zhang
,
H.
and
Chen
,
X.
, 2006, “
Dynamic Rupture on a Planar Fault in Three-dimensional Half-space—1. Theory
,”
Geophys. J. Int.
,
164
, pp.
633
652
.
20.
Hok
,
S.
and
Fukuyama
,
E.
, 2011, “
A New BIEM for Rupture Dynamics in Half-Space and its Application to the 2008 Iwate-Miyagi Nairiku Earthquake
,”
Geophys. J. Int.
,
184
, pp.
301
324
.
21.
Kame
,
N.
,
Saito
,
S.
, and
Oguni
,
K.
, 2008, “
Quasi-Static Analysis of Strike Fault Growth in Layered Media
,”
Geophys. J. Int.
,
173
, pp.
309
314
.
22.
Mikumo
,
T.
and
Miyatake
,
T.
, 1993, “
Dynamic Rupture Processes on a Dipping Fault, and Estimates of Stress Drop and Strength Excess from the Results of Waveform Inversion
,”
Geophys. J. Int.
,
112
, pp.
481
496
.
23.
Bonnet
,
M.
, 1995,
Boundary Integral Equation Methods for Solids and Fluids
,
John Wiley & Sons Ltd
,
Chichester
.
24.
Aki
,
K.
and
Richards
,
P.
, 2002,
Quantitative Seismology
,
2nd ed.
,
University Science Books
,
Sausalito
.
25.
Tse
,
S. T.
and
Rice
,
J. R.
, 1986, “
Crustal Earthquake Instability in Relation to the Depth Variation of Frictional Slip Properties
,”
J. Geophys. Res.
,
91
, pp.
9452
9472
.
26.
Burridge
,
R.
, 1969, “
The Numerical Solution of Certain Integral Equations with Non-integrable Kernels Arising in the Theory of Crack Propagation and Elastic Wave Diffraction
,”
Phil. Trans. R. Soc. London, Ser. A
,
265
, pp.
353
381
.
You do not currently have access to this content.