Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling. Ductile crack growth in a thin strip under mode I, overall plane strain, small scale yielding conditions is analyzed. Although overall plane strain loading conditions are prescribed, full 3D analyses are carried out to permit modeling of the three dimensional material microstructure and of the resulting three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low strength, which result in large voids near the crack tip at an early stage, and small second phase particles, which require large strains before cavities nucleate. The larger inclusions are represented discretely and various three dimensional distributions of the larger particles are considered. The scaling properties of the predicted thickness average fracture surfaces are calculated and the results are discussed in light of experimental observations.

References

1.
Mandelbrot
,
B. B.
,
Passoja
,
D. E.
, and
Paullay
,
A. J.
, 1984, “
Fractal Character of Fracture Surfaces of Metals
,”
Nature
,
308
, pp.
721
722
.
2.
Termonia
,
Y.
, and
Meakin
,
P.
, 1986, “
Formation of Fractal Cracks in a Kinetic Fracture Model
,”
Nature
,
320
, pp.
429
431
.
3.
Hansen
,
A.
,
Hinrichsen
,
E. L.
, and
Roux
,
S.
, 1991, “
Roughness of Crack Interfaces
,”
Phys. Rev. Lett.
,
66
, pp.
2476
2479
.
4.
Kertesz
,
J.
,
Horvath
,
V. K.
, and
Weber
,
F.
, 1993, “
Self-Affine Rupture Lines in Paper Sheets
,”
Fractals
,
1
, pp.
67
74
.
5.
Bouchaud
,
E.
,
Lapasset
,
G.
, and
Planes
,
J.
, 1990, “
Fractal Dimension of Fractured Surfaces: A Universal Value?
,”
Europhys. Lett.
,
13
, pp.
73
79
.
6.
Måløy
,
K. J.
,
Hansen
,
A.
,
Hinrichsen
,
E. L.
, and
Roux
,
S.
, 1992, “
Experimental Measurements of the Roughness of Brittle Cracks
,”
Phys. Rev. Lett.
,
68
, pp.
213
215
.
7.
Ponson
,
L.
, 2007, “
Crack Propagation in Disordered Materials: How to Decipher Fracture Surfaces
,”
Ann. Phys.
(Paris),
32
, pp.
1
120
.
8.
Bonamy
,
D.
, and
Bouchaud
,
E.
, 2011, “
Failure of Heterogeneous Materials: A Dynamic Phase Transition?
,”
Phys. Rep.
,
498
, pp.
1
44
.
9.
Ponson
,
L.
,
Bonamy
,
D.
, and
Bouchaud
,
E.
, 2006, “
Two Dimensional Scaling Properties of Experimental Fracture Surfaces
,”
Phys. Rev. Lett.
,
96
, p.
035506
.
10.
Ponson
,
L.
,
Bonamy
,
D.
,
Auradou
,
H.
,
Mourot
,
G.
,
Morel
,
S.
,
Bouchaud
,
E.
,
Guillot
,
C.
, and
Hulin
,
J. P.
, 2006, “
Anisotropic Self-Affine Properties of Experimental Fracture Surfaces
,”
Int. J. Fract.
,
140
, pp.
27
37
.
11.
Ponson
,
L.
,
Auradou
,
H.
,
Vié
,
P.
, and
Hulin
,
J. P.
, 2006, “
Low Self-Affine Exponents of Fractured Glass Ceramics Surfaces
,”
Phys. Rev. Lett.
,
97
, p.
125501
.
12.
Ponson
,
L.
,
Auradou
,
H.
,
Pessel
,
M.
,
Lazarus
,
V.
, and
Hulin
,
J. P.
, 2008, “
Failure Mechanisms and Surface Roughness Statistics of Fractured Fontainebleau Sandstone
,”
Phys. Rev. E
,
76
, p.
036108
.
13.
Bonamy
,
D.
,
Ponson
,
L.
,
Prades
,
S.
,
Bouchaud
,
E.
, and
Guillot
,
E.
, 2006, “
Scaling Exponents for Fracture Surfaces in Homogeneous Glass and Glassy Ceramics
,”
Phys. Rev. Lett.
,
97
, p.
135504
.
14.
Gurson
,
A. L.
, 1975, “
Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction
,” Ph.D. thesis, Brown University, Providence, RI.
15.
Tvergaard
,
V.
, and
Needleman
,
A.
, 2006, “
Three Dimensional Microstructural Effects on Plane Strain Ductile Crack Growth
,”
Int. J. Solids Struct.
,
43
, pp.
6165
6179
.
16.
Tvergaard
V.
, 1990, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
, pp.
83
151
.
17.
Pan
,
J.
,
Saje
,
M.
, and
Needleman
,
A.
, 1983, “
Localization of Deformation in Rate Sensitive Porous Plastic Solids
,”
Int. J. Fract.
,
21
, pp.
261
278
.
18.
Tvergaard
,
V.
, 1981, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
, pp.
389
407
.
19.
Tvergaard
,
V.
, 1982, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
,
18
, pp.
237
252
.
20.
Tvergaard
,
V.
,
and
Needleman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta. Metall.
,
32
, pp.
157
169
.
21.
Belytschko
,
T.
,
Chiapetta
,
R. L.
, and
Bartel
,
H. D.
, 1976, “
Efficient Large Scale Non-Linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Methods Eng
,,
10
, pp.
579
596
.
22.
Peirce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
, 1984, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
,
18
, pp.
875
887
.
23.
Tvergaard
,
V.
, 1982, “
Influence of Void Nucleation on Ductile Shear Fracture at a Free Surface
,”
J. Mech. Phys. Solids
,
30
, pp.
399
425
.
24.
Chu
,
C. C.
, and
Needleman
,
A.
, 1980, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol.
,
102
, pp.
249
256
.
25.
Bron
,
F.
, and
Besson
,
J.
, 2006, “
Simulation of the Ductile Tearing for Two Grades of 2024 Aluminum Alloy Thin Sheets
,”
Eng. Fract. Mech.
,
73
, pp.
1531
1552
.
You do not currently have access to this content.